PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigating the Effect of Hybrid Process: MPF/SPIF on the Microstructure and Mechanical Properties of Brass (65-35) Sheet

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Metal forming process is one of the most important manufacturing processes that translate the sheet and bulk metal to the final product with simple punch and. Single point incremental forming (SPIF) process is considered as a modern flexible manufacturing techniques that is use a simple tool and non-specific fixture die to complete the forming, this method is used in prototype manufacturing system due to the time consuming during the forming. The advantage of this process is low cost and simple equipment. However, some limitation was founded including poor geometric accuracy, non- uniform thickness distribution, dimple and high forming time. Multi-point forming (MPF) is another modern forming method that is used in industrial applications due to its advantage such as uniform thickness distribution with low forming time consuming. This method used matrix of simple tools to deform the sheet metal to the desired shape. Wrinkle and dimple due to small contact area between tool and blank under high forming force are considered the main limitation of using MPF process. To take the advantages of this processes with reduced the limitations a hybrid forming (HF) process of both MPF and SPIF are used. The experimental work was applied to produce a hemi-spherical product of brass blank using the SPIF, MPF, and HF processes. Satisfactory results are obtained using a hybrid forming process with free of defects products and reduction in production as compared to the SPIF. A high improve in microstructure including refinements in grain size with twins effects. The sample produced with SPIF process showed a high microhardness as compared to the sample produced using MPF process, however, the hybrid MPF and SPIF forming process showed slightly improving in microhardness as comparing to the as received materials, reflecting the microstructure development of the processed samples.
Twórcy
  • Department of Production and metallurgy, University of Technology, Baghdad, Iraq
  • Department of Mechanical Engineering, Collage of Engineering, Al-Nahrain University, Jadriya, Baghdad, Iraq
  • Department of Production and metallurgy, University of Technology, Baghdad, Iraq
Bibliografia
  • 1. Lu B., et al. A hybrid flexible sheet forming approach towards uniform thickness distribution. Procedia CIRP, 18, 2014: 244-249. https://doi. org/10.1016/j.procir.2014.06.139
  • 2. Park Jong-Jin, and Yung-Ho Kim. Fundamental studies on the incremental sheet metal forming technique. Journal of Materials Processing Technology, 140(1-3), 2003: 447-453. https://www.sciencedirect. com/science/article/abs/pii/S0924013603007684
  • 3. Li M.Z., Liu Y., Su S., Li G. Multi-point forming: a flexible manufacturing method for a 3-d Surface sheet. J Mater Process Technol, 87(1-3), 1999: 277– 280. https://www.sciencedirect.com/science/article/ abs/pii/S0924013698003641?via%3Dihub
  • 4. Zhongyi Cai, and Li Mingzhe. Optimum path forming technique for sheet metal and its realization in multi-point forming. Journal of Materials Processing Technology, 110(2), 2001: 136-141. https:// www.sciencedirect.com/science/article/abs/pii/ S0924013600008372
  • 5. Zhong-Yi Cai, Li Ming-Zhe, and Chen Xi-Di. Digitized die forming system for sheet metal and springback minimizing technique. The International Journal of Advanced Manufacturing Technology, 28(11-12), 2006: 1089-1096. https://www.proquest. com/openview/92791bbf2fe5296d771c1435c2dd3 531/1?pq-origsite=gscholar&cbl=2044010
  • 6. Hmida, R.B., et al. Influence of the initial grain size in single point incremental forming process for thin sheets metal and microparts: Experimental investigations. Materials & Design, 45, 2013: 155-165. https://doi.org/10.1016/j.matdes.2012.08.077
  • 7. Abbas, T.F., Younis K.M., Mansor K.K. The influence of process parameters on thickness distribution in multipoint forming process using finite element analysis. 2nd International Conference on Electrical, Communication, Computer, Power and Control Engineering (ICECCPCE). IEEE, 2019. https://ieeex- plore.ieee.org/abstract/document/9072700
  • 8. Li Ming-Zhe, et al. Multi-point forming technol- ogy for sheet metal. Journal of Materials Processing Technology, 129(1-3), 2002: 333-338. https://doi. org/10.1016/S0924-0136(02)00685-4
  • 9. Zhang Huan, et al. Thickness control in a new flexible hybrid incremental sheet forming process. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 231(5), 2017: 779-791. https://doi.org/10.1177/0954405417694061
  • 10. Araghi, B.T., et al. Investigation into a new hybrid forming process: Incremental sheet forming combined with stretch forming. CIRP annals, 58(1), 2009: 225-228. https://doi.org/10.1016/j.cirp.2009.03.101
  • 11. Lu B., et al. A hybrid flexible sheet forming approach towards uniform thickness distribution. Procedia CIRP, 18, 2014: 244-249. https://doi.org/10.1016/j. procir.2014.06.139
  • 12. Boudhaouia S., et al. Experimental and numerical study of a new hybrid process: multi-point incremental forming (MPIF). International Journal of Material Formingm, 11, 2018: 815-827. https://link. springer.com/article/10.1007/s12289-017-1392-1
  • 13. Bedan A.S., et al. Design and implementation of asymmetric extrusion die using bezier technique. IOP Conference Series: Materials Science and Engineering, 881(1), 2020. https://iopscience.iop.org/ article/10.1088/1757-899X/881/1/012052/meta
  • 14. Lu Bin, et al. Microstructure refinement by tool rotation-induced vibration in incremental sheet forming. Procedia Engineering, 207, 2017: 795-800. https://www.sciencedirect.com/science/article/pii/ S1877705817356084?via%3Dihub
  • 15. Algodi S.J., et al. Modelling and characterisation of electrical discharge TiC-Fe cermet coatings. Procedia CIRP, 68, 2018: 28-33. https://www.sciencedirect. com/science/article/pii/S2212827117309587
  • 16. Bao W., et al. Experimental investigation on formability and microstructure of AZ31B alloy in electropulse- assisted incremental forming. Materials & Design, 87, 2015: 632-639. https://www.sciencedirect.com/science/ article/abs/pii/S0264127515303221 ?via%3Dihub
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2aeb5dfe-76d1-414c-b5ab-97737572a47a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.