PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

A comparative study of thyme ( Thymus vulgaris L.) essential oils and thymol – differences in chemical composition and cytotoxicity

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The chemical composition of commercial thyme oils, freshly hydrodistilled EO (essetntial oil) from dried thyme herb and thymol, the main thyme oil constituent, were analyzed in the aspect of possible cytotoxic effect against MCF-7 breast cancer and normal L929 mouse fibroblast cell lines. Based on the GC-MS analysis, it was found that the commercial essential oils revealed similarities in their chemical composition. The content of main components such as thymol, linalool and α-pinene was almost equal. Interestingly, the EO obtained by hydrodistillation from Thymi herba showed considerable differences in the percentage content of some main constituents. The reason for the differences may be caused by the intraspecific chemical variability of T. vulgaris L. Four types of tested EOs can be classified as a ‘thymol’ chemotype, with thymol as the predominant compound. The thymol alone and the freshly hydrodistilled EO demonstrated the highest cytotoxic effect against used cell lines. The difference in IC50 values suggests more sensitive L929 cells are more sensitive in both the CCK-8 assay (except EOs Kawon) and the NRU assay.
Rocznik
Strony
art. no. e55
Opis fizyczny
Bibliogr. 68 poz., tab., wykr.
Twórcy
  • West Pomeranian University of Technology, Szczecin, Laboratory of Cytogenetics, Klemensa Janickiego 29, 71-270 Szczecin, Poland
  • West Pomeranian University of Technology, Szczecin, Institute of Chemical Engineering and Environmental Protection Process, Piastow 42, 71-065 Szczecin, Poland
  • West Pomeranian University of Technology, Szczecin, Institute of Chemical Engineering and Environmental Protection Process, Piastow 42, 71-065 Szczecin, Poland
  • West Pomeranian University of Technology, Szczecin, Laboratory of Cytogenetics, Klemensa Janickiego 29, 71-270 Szczecin, Poland
Bibliografia
  • 1. Aleksandrzak M., Jedrzejczak-Silicka M., Sielicki K., Piotrowska K., Mijowska E., 2019. Size-dependent in vitro biocompatibility and uptake process of polymeric carbon nitride. ACS Appl. Mater. Interfaces, 11, 47739–47749. DOI: 10.1021/acsami.9b17427.
  • 2. Anžlovar S., Baričevič D., Ambrožič Avguštin J., Koce J.D., 2014. Essential oil of common thyme as a natural antimicrobial food additive. Food Technol. Biotechnol., 52, 263–268.
  • 3. Arunasree K.M., 2010. Anti-proliferative effects of carvacrol on a human metastatic breast cancer cell line, MDA-MB 231. Phytomedicine, 17, 581–588. DOI: 10.1016/j.phymed.2009.12.008.
  • 4. Attoub S., Sperandio O., Raza H., Arafat K., Al-Salam S., Al Sultan M.A., Al Safi M., Takahashi T., Adem A., 2012. Thymoquinone as an anticancer agent: evidence from inhibition of cancer cells viability and invasion in vitro and tumor growth in vivo. Fundam. Clin. Pharmacol., 27, 98-102. DOI: 10.1111/j.1472-8206.2012.01056.x.
  • 5. Babushok V.I., Linstrom P.J., Zenkevich I.G., 2011. Retention indices for frequently reported compounds of plant essential oils. J. Phys. Chem. Ref. Data., 40, 043101. DOI: 10.1063/1.3653552.
  • 6. Balladin D.A., Headley O., 1999. Evaluation of solar dried thyme (Thymus vulgaris Linné) herbs. Renewable Energy, 17, 523–531. DOI: 10.1016/S0960-1481(98)00757-5.
  • 7. Basch E., Ulbricht C., Hammerness P., Blevins A., Sollars D., 2004. Thyme (Thymus vulgaris L.), thymol. J. Herb. Pharmacother., 4, 49–67. DOI: 10.1080/J157v04n01_07.
  • 8. Blowman K., Magalhães M., Lemons M.F.L, Cabral C., Pires I.M., 2018. Anticancer properties of essential oils and natural products. Evidence-Based Complementary Altern. Med., 2018, 3149362. DOI: 10.1155/2018/3149362.
  • 9. Chamchoy K., Pakotiprapha D., Pumirat P., Leartsakulpanich U. Boonyuen U., 2019. Application of WST-8 based colorimetric NAD(P)H detection for quantitative dehydrogenase assays. BMC Biochem., 20, 4. DOI: 10.1186/s12858-019-0108-1.
  • 10. Cicvarek Z., 1964. On the mechanism of a positive thymol turbidity reaction in waldenstroem’s macroglobulinemia. Bratisl. Lek. Listy, 44, 385–390.
  • 11. Dapkevicius A., van Beek T.A., Lelyveld G.P., van Veldhuizen A., de Groot A., Linssen J.P.H., Venskutonis R., 2002. Isolation and structure elucidation of radical scavengers from Thymus vulgaris leaves. J. Nat. Prod., 65, 892–896. DOI: 10.1021/np010636j.
  • 12. Deering K., Nethery W., Averill C., Esposito E., 2017. Effects of thyme essential oil chemotypes on breast and cervical cancer cell lineages. Ann. Pharmacol. Pharm., 2, 1008.
  • 13. Duke J.A., 1992. Handbook of phytochemical constituents of GRAS herbs and other economic plants. 1st edition, CRC Press Inc., Boca Raton, 593-597.
  • 14. European Directorate for the Quality of Medicines & Healthcare.,
  • 15. European Pharmacopoeia Commission., Council of Europe, 2010.
  • 16. European Pharmacopoeia. 7th edition, Strasbourg, Council of Europe, 1252–1254. European Medicines Agency (EMA), 2010. Assessment report on Thymus vulgaris L. Thymus zygis Loefl. ex. L. aetheroleum.
  • 17. EMA/HMPC/52980/2017. Committee on Herbal Medicinal Products (HMPC). Available at: https://www.fitoterapia.net/archivos/201910/draft-assessment-report-thymus-vulgaris-l-thymus-zygis-l-aetheroleum-revision-1_en.pdf.
  • 18. Farahbakhsh J., Najafian S., Hosseinifarahi M., Gholipour S., 2021. Essential oil storage conditions affect the chemical composition in cultivated Mentha spicata. Iran. J. Plant Physiol., 11, 3617–3624.
  • 19. Ferreira J.V., Capello T.M, Siqueira L.J.A., Lago J.H.G., Caseli L. 2016. Mechanism of action of thymol on cell membranes in- vestigated through lipid langmuir monolayers at the air-water interface and molecular simulation. Langmuir, 32, 3234–3241. DOI: 10.1021/acs.langmuir.6b00600.
  • 20. Gali-Muhtasib H., Kuester D., Marwin C., Bajbouj K., Diestel A., Ocker M., Habold C., Foltzer-Jourdainne C., Schoenfeld P., Peters B., Diab–Assaf M., Pommrich U., Itani W., Lippert H., Roessner A., Schneider-Stock R., 2008. Thymoquinone triggers inactivation of the stress response pathway sensor CHEK 1 and contributes to apoptosis in colorectal cancer cells. Cancer Res., 68, 5609–5618. DOI: 10.1158/0008-5472.CAN-08-0884.
  • 21. Gautam N., Mantha A.K., Mittal S., 2014. Essential oils and their constituents as anticancer agents: a mechanistic view. BioMed Res. Int., 2014, 154106. DOI: 10.1155/2014/154106.
  • 22. Granger R., Passet J., 1973. Thymus vulgaris spontane de France: races chimiques et chemotaxonomie. Phytochem., 12, 1683–1691. DOI: 10.1016/0031-9422(73)80388-7.
  • 23. Granger R., Passet J., Arbousset G., 1973. L’essence de Rosmarinus officinalis L. II. Influence des facteurs ecologiques et individuals. Parfum. Cosmet. Savons France, 3, 307–312.
  • 24. Habtemariam S., Lentini G., 2018. Plant-derived anticancer agents: lessons from the pharmacology of geniposide and its aglycone, genipin. Biomedicines, 6, 39. DOI: 10.3390/biomedicines6020039.
  • 25. Harbeck N., Penault-Llorca F., Cortes J., Gnant M., Houssami N., Poortmans P., Ruddy K., Tsang J., Cardoso F., 2019. Breast cancer. Nat. Rev. Dis. Primers., 5, 66. DOI: 10.1038/s41572-019-0111-2.
  • 26. Hudaib M., Aburjai T., 2007. Volatile components of Thymus vulgaris L. from wild-growing and cultivated plants in Jordan. Flavour Fragr. J., 22, 322–327. DOI: 10.1002/ffj.1800.
  • 27. Islam M.T., 2019. Anticancer activity of thymol: A literature-based review and docking study with Emphasis on its anticancer mechanisms. IUBMB Life, 71, 9–19. DOI: 10.1002/iub.1935.
  • 28. Jamali C.A., Kasrati A., Fadli M., Hassani L., Leach D., Abbad A., 2018. Synergistic effects of three moroccan thyme essential oils with antibiotic cefixime. Phytothérapie, 16, S149–S154. DOI: 10.3166/phyto-2019-0143.
  • 29. Jedrzejczak-Silicka M., 2017. Cytotoxicity and genotoxicity of GO-Fe3O4 hybrid in cultured mammalian cells. Pol. J. Chem. Technol., 19, 27–33. DOI: 10.1515/pjct-2017-0004.
  • 30. Jedrzejczak-Silicka M., Kordas M., Konopacki M., Rakoczy R., 2020. The cell type-dependent response to the rotating magnetic field (RMF) – An in vitro wound healing study, In: Sosnowski T.R., Szwast M. (Eds.), Chemical and Process Engineering for Environment and Health. Publishing House of Łukasiewicz – Institute for Sustainable Technologies, Radom, 122–133.
  • 31. Jedrzejczak-Silicka M., Kordas M., Konopacki M., Rakoczy R., 2021. Modulation of cellular response to different parameters of the rotating magnetic field (RMF) – an in vitro wound healing study. Int. J. Mol. Sci., 22, 5785. DOI: 10.3390/ijms22115785.
  • 32. Jedrzejczak-Silicka M., Urbas K., Mijowska E., Rakoczy R., 2017. The covalent and non-covalent conjugation of graphene oxide with hydroxycamptothecin in hyperthermia for its anticancer activity. J. Alloys Compd., 709, 112–124. DOI: 10.1016/j.jallcom.2017.03.146.
  • 33. Kang S.-H., Kim Y.-S., Kim E.-K., Hwang J.-W., Jeong J.-H., Dong X., Lee J.-W., Moon S.-H., Jeon B.-T., Park P-J., 2016. Anticancer effect of thymol on AGS human gastric carcinoma cell. J. Microbiol. Biotechnol., 26, 28–37. DOI: 10.4014/jmb.1506.06073.
  • 34. Kokkini S., Vokou D., 1989. Mentha spicata (Lamiaceae) chemotypes growing wild in Greece. Econ. Bot., 43, 192–202. DOI: 10.1007/BF02859860.
  • 35. Kubatka P., Uramova S., Kello M., Kajo K., Samec M., Jasek K., Vybohova D., Liskova A., Mojzis J., Adamkov M., Zubor P., Smejkal K., Svajdlenka E., Solar P., Samuel S.M., Zulli A., Kassayova M., Lasabova Z., Kwon, T.K., Pec M., Danko J., Büsselberg D., 2019. Anticancer activities of Thymus vulgaris L. in experimental breast carcinoma in vivo and in vitro. Int. J. Mol. Sci., 20, 1749. DOI: 10.3390/ijms20071749.
  • 36. Lesgards J.-F., Baldovini N., Vidal N., Pietri S., 2014. Anticancer activities of essential oils constituents and synergy with conventional therapies: A review. Phytother. Res., 28, 1423–1446. DOI: 10.1002/ptr.5165.
  • 37. Maclagan N.F., Pradhan K., Sule U., Wallsgrove R., Cooke K.B., Lee J., 1974. A modi?ed thymol turbidity test in hyperglobu-linaemia. Clin. Chim. Acta, 53, 339–349. DOI: 10.1016/0009-8981(74)90273-3.
  • 38. Manikandan P., Murugan R.S., Priyadarsini R.V., Vinothini G., Nagini S., 2010. Eugenol induces apoptosis and inhibits invasion and angiogenesis in a rat model of gastric carcinogenesis induced by MNNG. Life Sci., 86, 936–941. DOI: 10.1016/j.lfs.2010.04.010.
  • 39. Marzec M., Polakowski C., Chilczuk R., Kołodziej B., 2010. Evaluation of essential oil content, its chemical composition and price of thyme (Thymus vulgaris L.) raw material available in Poland. Herba Polonica, 56, 37–52.
  • 40. Nagoor Meeran M.F., Javed H., Al Taee H., Azimullah S., Ojha S.K., 2017. Pharmacological properties and molecular mechanisms of thymol: prospects for its therapeutic potential and pharmaceutical development. Front. Pharmacol., 8, 380. DOI: 10.3389/fphar.2017.00380.
  • 41. Niksic H., Becic F., Koric E., Gusic I., Omeragic E., Muratovic S., Miladinovic B., Duric K., 2021. Cytotoxicity screening of Thymus
  • 42. vulgaris L. essential oil in brine shrimp nauplii and cancer celllines. Sci. Rep., 11, 13178. DOI: 10.1038/s41598-021-92679-x.
  • 43. Oliviero M., Romilde I., Beatrice M.M., Matteo V., Giovanna N., Consuelo A., Claudio C., Giorgio S., Filippo M., Massimo N., 2016. Evaluations of thyme extract effects in human normal bronchial and tracheal epithelial cell lines and in human lung cancer cell line. Chem. Biol. Interact., 256, 125–133. DOI: 10.1016/j.cbi.2016.06.024.
  • 44. Polo M.P., Crespo R., de Bravo M.G., 2011. Geraniol and simavastatin show a synergistic effect on a human hepatocarcinoma cellline. Cell Biochem. Funct., 29, 452–458. DOI: 10.1002/cbf.1772.
  • 45. Rabi T., Bishayee A., 2009. d-Limonene sensitizes decetaxel-induced cytotoxity in human prostate cancer cells: generation of reactive oxygen species and induction of apoptosis. J. Carcinog. 8, 9. DOI: 10.4103/1477-3163.51368.
  • 46. Rahman F.-U., Bhatti M.Z., Ali A., Duong H.-Q., Zhang Y., Ji X., Lin Y., Wang H., Li Z.-T., Zhang D.-W., 2018. Dimetallic Ru(II) arene complexes appended on bis-salicylaldimine induce cancer cell death and suppress invasion via p53-dependent signaling. Eur. J. Med. Chem., 157, 1480–1490. DOI: 10.1016/j.ejmech.2018.08.054.
  • 47. Rios-Estepa R., Turner G.W., Lee J.M., Croteau R.B., Lange B.M., 2008. A systems biology approach identifies the biochemical mechanisms regulating monoterpenoid essential oil composition in peppermint. Proc. Natl. Acad. Sci. U.S.A., 105, 2818–2823. DOI: 10.1073/pnas.0712314105.
  • 48. Salehi B., Mishra A.P., Shukla I., Sharifi-Rad M., del Mar Contreras M., Segura–Carretero A., Fathi H., Nasrabadi N.N., Kobarfard F., Sharifi-Rad J., 2018a. Thymol, thyme, and other plant sources: health and potential uses. Phytother. Res., 32, 1688–1706. DOI: 10.1002/ptr.6109.
  • 49. Salehi B., Zucca P., Sharifi-Rad M., Pezzani R., Rajabi S., Setzer W.N., Varoni E.M., Iriti M., Kobarfard F., Sharifi-Rad J., 2018b. Phytotherapeutics in cancer invasion and metastasis. Phytother. Res., 32, 1425–1449. DOI: 10.1002/ptr.6087.
  • 50. Satooka H., Kubo I., 2012. Effects of thymol on B16-F10 melanoma cells. J. Agric. Food Chem., 60, 2746–2752. DOI: 10.1021/jf204525b.
  • 51. Satyal P., Murray B.L., McFeeters R.L., Setzer W.N., 2016. Essential oil characterization of Thymus vulgaris from various geographical locations. Foods, 5, 70. DOI: 10.3390/foods5040070.
  • 52. Sebaugh J.L., 2011. Guidelines for accurate EC50/IC50 estimation. Pharm. Stat., 10, 128–134. DOI: 10.1002/pst.426.
  • 53. Sertel S., Eichhorn T., Plinkert P.K., Efferth T., 2011. Cytotoxity of Thymus vulgaris essential oil towards human oral cavity squamous cell carcinoma. Anticancer Res., 31, 81–87.
  • 54. Shin S.-H., Park J.-H., Kim G.-C., Park B.-S., Gil Y.-S., Kim C.-H., 2007. The mechanism of apoptosis induced by eugenol in human osteosarcoma cells. J. Kor. Assoc. Oral Maxillofacial Surg., 33, 20–27.
  • 55. Sikkema J., de Bont J.A., Poolman B., 1995. Mechanisms of membrane toxicity of hydrocarbons. Microbiol. Mol. Biol. Rev., 59, 201–222. DOI: 10.1128/mr.59.2.201-222.1995.
  • 56. Slamenová D., Horváthová E., Sramková M., Marsálková L., 2007. DNA-protective effects of two components of essential plant oils carvacrol and thymol on mammalian cells cultured in vitro. Neoplasma, 54, 108–112.
  • 57. Stahl-Biskup E., Saez F., 2002. Thyme. The Genus Thymus. 1st edition, CRC Press Inc., London, 1–20. DOI: 10.4324/9780203216859.
  • 58. Thompson J.D., Chalchat J.-C., Michet A., Linhart Y.B., Ehlers B., 2003. Qualitative and quantitative variation in monoterpene co-occurrence and composition in the essential oil of Thymus vulgaris chemotypes. J. Chem. Ecol., 29, 859–880. DOI: 10.1023/a:1022927615442.
  • 59. Torras J., Grau M.D., Lopez J.F., de las Heras F.X., 2007. Analysis of essential oils from chemotypes of Thymus vulgaris in Catalonia. J. Sci. Food Agric., 87, 2327–2333. DOI: 10.1002/jsfa.2995.
  • 60. Uribe S., Alvarez R., Peña A., 1984. Effects of ˛-pinene, a non- substituted monoterpene, on rat liver mitochondria. Pestic. Biochem. Physiol., 22, 43–50. DOI: 10.1016/0048-3575(84)90008-7.
  • 61. Uribe S., Ramirez J., Peña A., 1985. Effects of beta–pinene on yeast membrane functions. J. Bacteriol., 161, 1195–1200. DOI: 10.1128/jb.161.3.1195-1200.1985.
  • 62. Venskutonis P.R., 1997. Effect of drying on the volatile constituents of thyme (Thymus vulgaris L.) and sage (Salvia officinals L.). Food Chem., 59, 219–227. DOI: 10.1016/S0308-8146(96)00242-7.
  • 63. Verrax J., Calderon P.B., 2011. Comparison between the TC10TMautomated cell counter and the lactate dehydrogenase (LDH) assay to assess cellular toxicity in vitro. Bioradiations. A Resource for Life Science Research. Available at: https://www.bioradiations.com/comparison-between-the-tc10-automated-cell-counter-and-the-lactate-dehydrogenase-ldh-assay-to-assess-cellular-toxicity-in-vitro/.
  • 64. Vidhya N., Devaraj S.N., 2011. Induction of apoptosis by eugenol in human breast cancer cells. Indian J. Exp. Biol., 49, 871–878.
  • 65. Vokou D., Kokkini S., Bessiere J.-M., 1993. Geographic variation of Greek oregano (Origanum vulgare ssp. hirtum) essential oils. Biochem. Syst. Ecol., 21, 287–295. DOI: 10.1016/0305-1978(93)90047-U.
  • 66. Wesołowska A., Jadczak D., Grzeszczuk M., 2012. Influence of distillation time on the content and composition of essential oil isolated from wild thyme (Thymus serpyllum L.). Herba Polonica, 58, 40–50.
  • 67. Yoo C.-B., Han K.-T., Cho K.-S., Ha J., Park H.-J., Nam J.-H., Kil U.-K., Lee K.-T., 2005. Eugenol isolated from the essential oil of Eugenia caryophyllata induces a reactive oxygen species-mediated apoptosis in HL-60 human promyelocytic leukemia cells. Cancer Lett., 225, 41–52. DOI: 10.1016/j.canlet.2004.11.018.
  • 68. Zu Y., Yu H., Liang L., Fu Y., Efferth T., Liu X., Wu N., 2010. Activities of ten essential oils towards Propionibacterium acnes and PC-3, A-549 and MCF-7 cancer cells. Molecules, 15, 3200–3210. DOI: 10.3390/molecules15053200.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2ae467ed-0084-4545-afc4-7cb1f8a07f48
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.