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Abstract. The global (absolute) stability of nonlinear systems with negative feedbacks and positive descriptor linear parts is addressed. Transfer 
matrices of positive descriptor linear systems are analyzed. The characteristics u = f (e) of the nonlinear parts satisfy the condition k1e ∙ f (e) ∙ k2e 
for some positive k1, k2. It is shown that the nonlinear feedback systems are globally asymptotically stable if the Nyquist plots of the positive 
descriptor linear parts are located in the right-hand side of the circles 

³
– 1/k1, – 1/k2

´
.
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nonlinear feedback systems with positive descriptor linear parts 
are established. Concluding remarks are given in Section 6.

The following notation will be used: ℜ – the set of real 
numbers, ℜn×m – the set of n×m real matrices, ℜ+

n×m – the set 
of n×m real matrices with nonnegative entries and ℜ+

n = ℜ+
n×1, 

Mn – the set of n×n Metzler matrices (real matrices with non-
negative off-diagonal entries), In – the n×n identity matrix.

2. Preliminaries

Consider the standard continuous-time linear system

 x ̇ (t) = Ax(t) + Bu(t), (1a)

 y(t) = Cx(t) + Du(t), (1b)

where x(t) 2 ℜn, u(t) 2 ℜm, y(t) 2 ℜp are the state, input and 
output vectors and A 2 ℜn×n, B 2 ℜn×m, C 2 ℜp×n, D 2 ℜp×m.

Definition 1. [2, 3] The system (1) is called (internally) posi-
tive if x(t) 2 ℜ+

n and y(t) 2 ℜ+
p, t ¸ 0 for any initial conditions 

x(0) 2 ℜ+
n and all inputs u(t) 2 ℜ+

m, t ¸ 0.

Theorem 1. [2, 3] The system (1) is positive if and only if

 A 2 Mn, B 2 ℜ+
n×m, C 2 ℜ+

p×n, D 2 ℜ+
p×m. (2)

The transfer matrix of the system (1) is given by

 T(s) = C[Ins ¡ A]–1B + D . (3)

Theorem 1. If the matrix A 2 Mn is Hurwitz and B 2 ℜ+
n×m, 

C 2 ℜ+
p×n, D 2 ℜ+

p×m of the linear positive system (1), then all 
coefficients of the transfer matrix (3) are positive.

Proof. The proof is given in [19].

1. Introduction

In positive systems inputs, state variables and outputs take only 
nonnegative values. Examples of positive systems are indus-
trial processes involving chemical reactors, heat exchangers 
and distillation columns, storage systems, compartmental sys-
tems, water and atmospheric pollutions models. A variety of 
models having positive behavior can be found in engineering, 
management science, economics, social sciences, biology and 
medicine, etc. Positive linear systems are defined on cones and 
not on linear spaces. Therefore, the theory of positive systems 
is more complicated and less advanced. An overview of state 
of the art in positive systems theory is given in the monographs 
[1‒3].

Positive linear systems with different fractional orders have 
been addressed in [4, 5]. Stability of standard and positive sys-
tems has been investigated in [6‒11] and of fractional systems 
in [12‒15]. Descriptor positive systems have been analyzed in 
[16, 17]. Linear positive electrical circuits with state feedbacks 
have been addressed in [7, 18]. The global stability of nonlinear 
feedback systems with positive linear parts has been analyzed 
in [19].

In this paper the global stability of nonlinear systems with 
negative feedbacks and positive descriptor linear parts will be 
addressed.

The paper is organized as follows. In Section 2 the basic 
definitions and theorems concerning standard positive linear 
systems are recalled. The decomposition of fractional descrip-
tor linear systems into dynamical and static parts by the use 
of the shuffle algorithm is presented in Section 3. The transfer 
matrices of positive descriptor linear systems are addressed in 
Section 4.The main result of the paper is given in Section 5 
where the sufficient conditions for the global stability of the 

*e-mail: kaczorek@ee.pw.edu.pl

Manuscript submitted 2018-07-03, revised 2018-08-23, initially accepted  
for publication  2018-08-30, published in February 2019.



46

T. Kaczorek

Bull.  Pol.  Ac.:  Tech.  67(1)  2019

3. Decomposition of fractional descriptor  
linear systems

Consider the fractional linear descriptor continuous-time system
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q is the index of E, i.e. 1rankrank += qq EE . 

Proof. The proof follows directly from well known 

shuffle procedure [8] applied to (4a). 
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q is the index of E, i.e. 1rankrank += qq EE . 

Proof. The proof follows directly from well known 

shuffle procedure [8] applied to (4a). 
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Using Procedure 1 we shall decompose the descriptor 
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and the equations (7).

By Weierstrass-Kronecker theorem if the condition (5) is 
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Using Procedure 1 we shall decompose the descriptor 
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where r = deg det
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Esα ¡ A

¤
, A1 2 ℜn×n, N 2 ℜ(n ¡ r)×(n ¡ r) is 

a nilpotent matrix with the index q, i.e. N q = 0 and N q ¡ 1  6= 0.
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Using (15) we may write the equation (4a) in the form
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Using Procedure 1 we shall decompose the descriptor 

system (4) with (18) into the dynamical and static parts. 
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Using Procedure 1 we shall decompose the descriptor 
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Using Procedure 1 we shall decompose the descriptor 
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satisfy the conditions (29). Therefore, the descriptor 

system (4) with (18) is positive. 

4. Transfer matrices of positive stable 
descriptor linear systems 

Consider the descriptor linear system with regular 

pencil (6). 

Theorem 5. The transfer matrix of the descriptor system 

described by (7) and (4b) has the form 

....

)...(][

)....(][

,)(

22120

11110
1

11212

11110
1

111

2

1

1

1

µα
µ

α

µα
µ

αα

µα
µ

αα

sBsBB

sBsBBAsIAK

sBsBBAsIK

K

K
CsT

n

n

++++

+++−=

+++−=









=

−

−
(30) 

Proof. Applying the Laplace transform to (7a) and (7b) 

with zero initial conditions we obtain 

)()...()()( 111101111 sUsBsBBsXAsXs µα
µ

αα ++++=  (31a) 

and 

)()...()()( 221201212 sUsBsBBsXAsX µα
µ

α ++++= ,(31b) 

where 


∞

−==

0

111 )()]([)( dtetxtxsX
stL , )]([)( 22 txsX L= , 

)]([)( tusU L= .                      (31c) 

 (22)

is nonsingular and from (21) we have the dynamical part (7a) 
with

A11
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is nonsingular and from (21) we have the dynamical part 

(7a) with 
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1

0

0

12B (23a) 

and the static part (7b) with 

]000[21 =A , ]1[20 =B .                     (23b) 

Consider the fractional linear system described by 

α

αα

1

1

1

)(
...)()(

)(
0 q

q

q
dt

tud
BtuBtAx

dt

txd
+++= ,     (24a) 

α

α

2

2

2

)(
...)()()( 0 q

q

q
dt

tud
DtuDtCxty +++= ,    (24b) 

where 
n

tx ℜ∈)( , 
m

tu ℜ∈)( , 
p

ty ℜ∈)(  are the state, 

input and output vectors and nnA ×ℜ∈ , mn
kB ×ℜ∈ , 

1,...,1,0 qk =  npC ×ℜ∈ , mp
lD ×ℜ∈ , 2,...,1,0 ql = . 

Definition 2. The fractional system (24) is called 

(internally) positive if 
n

tx +ℜ∈)( , 
p

ty +ℜ∈)(  for any initial 

conditions 
n

x +ℜ∈)0(  and all inputs 

m

k

k

dt

tud
+ℜ∈

α

α )(
 for qk ,...,1,0= , ),max( 21 qqq = , 0≥t .(25) 

Theorem 3. The fractional system (24) is positive if and 

only if 

nMA∈ , mn
kB ×

+ℜ∈  for 1,...,1,0 qk =         (26) 

and 

np
C

×
+ℜ∈ , mp

lD ×
+ℜ∈  for 2,...,1,0 ql = .      (27) 

Proof. It is well-known that if 0)( =tu  then the solution 

)(tx  of (24a) for any 
n

x +ℜ∈)0(  is nonnegative for 0≥t  

if and only if nMA∈  and )(tx  of (24a) is nonnegative 

for any )(tu  satisfying (25) if and only if the conditions 

(26) are satisfied. Note that 
p

ty +ℜ∈)( , 0≥t  for )(tu  

satisfying (25) if and only if (27) holds. □ 

Theorem 4. The fractional descriptor system (4) with 

regular pencil is positive if and only if its dynamical and 

static parts satisfy the conditions 

111 nMA ∈ , mn
kB

×
+ℜ∈ 1

1  for µ,...,1=k          (28) 

and 

11)(
21

nnn
A

×−
+ℜ∈ , mnn

kB
×−

+ℜ∈ )(
2

1  for µ,...,1=k .   (29) 

Proof. By Theorem 3 the dynamical system (7a) is 

positive if and only if the conditions (28) are satisfied. If 

1)(1
n

tx +ℜ∈ , 0≥t  then 1)(2
nn

tx
−

+ℜ∈ , 0≥t  if and only if 

(29) holds. □ 

Example 2. (Continuation of Example 1) Consider the 

descriptor linear system (4) with (18). The matrices (23a) 

of the dynamical part of the descriptor linear system (4) 

with (18) satisfy the condition (28) and the matrices (23b) 

satisfy the conditions (29). Therefore, the descriptor 

system (4) with (18) is positive. 

4. Transfer matrices of positive stable 
descriptor linear systems 

Consider the descriptor linear system with regular 

pencil (6). 

Theorem 5. The transfer matrix of the descriptor system 

described by (7) and (4b) has the form 

....

)...(][

)....(][

,)(

22120

11110
1

11212

11110
1

111

2

1

1

1

µα
µ

α

µα
µ

αα

µα
µ

αα

sBsBB
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K

K
CsT

n

n

++++

+++−=

+++−=









=

−

−
(30) 

Proof. Applying the Laplace transform to (7a) and (7b) 

with zero initial conditions we obtain 

)()...()()( 111101111 sUsBsBBsXAsXs µα
µ

αα ++++=  (31a) 

and 

)()...()()( 221201212 sUsBsBBsXAsX µα
µ

α ++++= ,(31b) 

where 


∞

−==

0

111 )()]([)( dtetxtxsX
stL , )]([)( 22 txsX L= , 

)]([)( tusU L= .                      (31c) 
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is nonsingular and from (21) we have the dynamical part 

(7a) with 
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1
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12B (23a) 

and the static part (7b) with 

]000[21 =A , ]1[20 =B .                     (23b) 

Consider the fractional linear system described by 

α

αα

1

1

1

)(
...)()(

)(
0 q

q

q
dt

tud
BtuBtAx

dt

txd
+++= ,     (24a) 

α

α

2

2

2

)(
...)()()( 0 q

q

q
dt

tud
DtuDtCxty +++= ,    (24b) 

where 
n

tx ℜ∈)( , 
m

tu ℜ∈)( , 
p

ty ℜ∈)(  are the state, 

input and output vectors and nnA ×ℜ∈ , mn
kB ×ℜ∈ , 

1,...,1,0 qk =  npC ×ℜ∈ , mp
lD ×ℜ∈ , 2,...,1,0 ql = . 

Definition 2. The fractional system (24) is called 

(internally) positive if 
n

tx +ℜ∈)( , 
p

ty +ℜ∈)(  for any initial 

conditions 
n

x +ℜ∈)0(  and all inputs 

m

k

k

dt

tud
+ℜ∈

α

α )(
 for qk ,...,1,0= , ),max( 21 qqq = , 0≥t .(25) 

Theorem 3. The fractional system (24) is positive if and 

only if 

nMA∈ , mn
kB ×

+ℜ∈  for 1,...,1,0 qk =         (26) 

and 

np
C

×
+ℜ∈ , mp

lD ×
+ℜ∈  for 2,...,1,0 ql = .      (27) 

Proof. It is well-known that if 0)( =tu  then the solution 

)(tx  of (24a) for any 
n

x +ℜ∈)0(  is nonnegative for 0≥t  

if and only if nMA∈  and )(tx  of (24a) is nonnegative 

for any )(tu  satisfying (25) if and only if the conditions 

(26) are satisfied. Note that 
p

ty +ℜ∈)( , 0≥t  for )(tu  

satisfying (25) if and only if (27) holds. □ 

Theorem 4. The fractional descriptor system (4) with 

regular pencil is positive if and only if its dynamical and 

static parts satisfy the conditions 

111 nMA ∈ , mn
kB

×
+ℜ∈ 1

1  for µ,...,1=k          (28) 

and 

11)(
21

nnn
A

×−
+ℜ∈ , mnn

kB
×−

+ℜ∈ )(
2

1  for µ,...,1=k .   (29) 

Proof. By Theorem 3 the dynamical system (7a) is 

positive if and only if the conditions (28) are satisfied. If 

1)(1
n

tx +ℜ∈ , 0≥t  then 1)(2
nn

tx
−

+ℜ∈ , 0≥t  if and only if 

(29) holds. □ 

Example 2. (Continuation of Example 1) Consider the 

descriptor linear system (4) with (18). The matrices (23a) 

of the dynamical part of the descriptor linear system (4) 

with (18) satisfy the condition (28) and the matrices (23b) 

satisfy the conditions (29). Therefore, the descriptor 

system (4) with (18) is positive. 

4. Transfer matrices of positive stable 
descriptor linear systems 

Consider the descriptor linear system with regular 

pencil (6). 

Theorem 5. The transfer matrix of the descriptor system 

described by (7) and (4b) has the form 

....

)...(][

)....(][

,)(

22120

11110
1

11212

11110
1

111

2

1

1

1

µα
µ

α

µα
µ

αα

µα
µ

αα

sBsBB

sBsBBAsIAK

sBsBBAsIK

K

K
CsT

n

n

++++

+++−=

+++−=









=

−

−
(30) 

Proof. Applying the Laplace transform to (7a) and (7b) 

with zero initial conditions we obtain 

)()...()()( 111101111 sUsBsBBsXAsXs µα
µ

αα ++++=  (31a) 

and 

)()...()()( 221201212 sUsBsBBsXAsX µα
µ

α ++++= ,(31b) 

where 


∞

−==

0

111 )()]([)( dtetxtxsX
stL , )]([)( 22 txsX L= , 

)]([)( tusU L= .                      (31c) 
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is nonsingular and from (21) we have the dynamical part 

(7a) with 
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11B , 
















=

1
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0

12B (23a) 

and the static part (7b) with 

]000[21 =A , ]1[20 =B .                     (23b) 

Consider the fractional linear system described by 

α

αα

1

1

1

)(
...)()(

)(
0 q

q

q
dt

tud
BtuBtAx

dt

txd
+++= ,     (24a) 

α

α

2

2

2

)(
...)()()( 0 q

q

q
dt

tud
DtuDtCxty +++= ,    (24b) 

where 
n

tx ℜ∈)( , 
m

tu ℜ∈)( , 
p

ty ℜ∈)(  are the state, 

input and output vectors and nnA ×ℜ∈ , mn
kB ×ℜ∈ , 

1,...,1,0 qk =  npC ×ℜ∈ , mp
lD ×ℜ∈ , 2,...,1,0 ql = . 

Definition 2. The fractional system (24) is called 

(internally) positive if 
n

tx +ℜ∈)( , 
p

ty +ℜ∈)(  for any initial 

conditions 
n

x +ℜ∈)0(  and all inputs 

m

k

k

dt

tud
+ℜ∈

α

α )(
 for qk ,...,1,0= , ),max( 21 qqq = , 0≥t .(25) 

Theorem 3. The fractional system (24) is positive if and 

only if 

nMA∈ , mn
kB ×

+ℜ∈  for 1,...,1,0 qk =         (26) 

and 

np
C

×
+ℜ∈ , mp

lD ×
+ℜ∈  for 2,...,1,0 ql = .      (27) 

Proof. It is well-known that if 0)( =tu  then the solution 

)(tx  of (24a) for any 
n

x +ℜ∈)0(  is nonnegative for 0≥t  

if and only if nMA∈  and )(tx  of (24a) is nonnegative 

for any )(tu  satisfying (25) if and only if the conditions 

(26) are satisfied. Note that 
p

ty +ℜ∈)( , 0≥t  for )(tu  

satisfying (25) if and only if (27) holds. □ 

Theorem 4. The fractional descriptor system (4) with 

regular pencil is positive if and only if its dynamical and 

static parts satisfy the conditions 

111 nMA ∈ , mn
kB

×
+ℜ∈ 1

1  for µ,...,1=k          (28) 

and 

11)(
21

nnn
A

×−
+ℜ∈ , mnn

kB
×−

+ℜ∈ )(
2

1  for µ,...,1=k .   (29) 

Proof. By Theorem 3 the dynamical system (7a) is 

positive if and only if the conditions (28) are satisfied. If 

1)(1
n

tx +ℜ∈ , 0≥t  then 1)(2
nn

tx
−

+ℜ∈ , 0≥t  if and only if 

(29) holds. □ 

Example 2. (Continuation of Example 1) Consider the 

descriptor linear system (4) with (18). The matrices (23a) 

of the dynamical part of the descriptor linear system (4) 

with (18) satisfy the condition (28) and the matrices (23b) 

satisfy the conditions (29). Therefore, the descriptor 

system (4) with (18) is positive. 

4. Transfer matrices of positive stable 
descriptor linear systems 

Consider the descriptor linear system with regular 

pencil (6). 

Theorem 5. The transfer matrix of the descriptor system 

described by (7) and (4b) has the form 

....

)...(][

)....(][

,)(

22120

11110
1

11212

11110
1

111

2

1

1

1

µα
µ

α

µα
µ

αα

µα
µ

αα

sBsBB

sBsBBAsIAK

sBsBBAsIK

K

K
CsT

n

n

++++

+++−=

+++−=









=

−

−
(30) 

Proof. Applying the Laplace transform to (7a) and (7b) 

with zero initial conditions we obtain 

)()...()()( 111101111 sUsBsBBsXAsXs µα
µ

αα ++++=  (31a) 

and 

)()...()()( 221201212 sUsBsBBsXAsX µα
µ

α ++++= ,(31b) 

where 


∞

−==

0

111 )()]([)( dtetxtxsX
stL , )]([)( 22 txsX L= , 

)]([)( tusU L= .                      (31c) 

, B12
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                   (22) 

is nonsingular and from (21) we have the dynamical part 

(7a) with 
















−

−

=

100

032

012
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11B , 
















=

1

0

0

12B (23a) 

and the static part (7b) with 

]000[21 =A , ]1[20 =B .                     (23b) 

Consider the fractional linear system described by 

α

αα

1

1

1

)(
...)()(

)(
0 q

q

q
dt

tud
BtuBtAx

dt

txd
+++= ,     (24a) 

α

α

2

2

2

)(
...)()()( 0 q

q

q
dt

tud
DtuDtCxty +++= ,    (24b) 

where 
n

tx ℜ∈)( , 
m

tu ℜ∈)( , 
p

ty ℜ∈)(  are the state, 

input and output vectors and nnA ×ℜ∈ , mn
kB ×ℜ∈ , 

1,...,1,0 qk =  npC ×ℜ∈ , mp
lD ×ℜ∈ , 2,...,1,0 ql = . 

Definition 2. The fractional system (24) is called 

(internally) positive if 
n

tx +ℜ∈)( , 
p

ty +ℜ∈)(  for any initial 

conditions 
n

x +ℜ∈)0(  and all inputs 

m

k

k

dt

tud
+ℜ∈

α

α )(
 for qk ,...,1,0= , ),max( 21 qqq = , 0≥t .(25) 

Theorem 3. The fractional system (24) is positive if and 

only if 

nMA∈ , mn
kB ×

+ℜ∈  for 1,...,1,0 qk =         (26) 

and 

np
C

×
+ℜ∈ , mp

lD ×
+ℜ∈  for 2,...,1,0 ql = .      (27) 

Proof. It is well-known that if 0)( =tu  then the solution 

)(tx  of (24a) for any 
n

x +ℜ∈)0(  is nonnegative for 0≥t  

if and only if nMA∈  and )(tx  of (24a) is nonnegative 

for any )(tu  satisfying (25) if and only if the conditions 

(26) are satisfied. Note that 
p

ty +ℜ∈)( , 0≥t  for )(tu  

satisfying (25) if and only if (27) holds. □ 

Theorem 4. The fractional descriptor system (4) with 

regular pencil is positive if and only if its dynamical and 

static parts satisfy the conditions 

111 nMA ∈ , mn
kB

×
+ℜ∈ 1

1  for µ,...,1=k          (28) 

and 

11)(
21

nnn
A

×−
+ℜ∈ , mnn

kB
×−

+ℜ∈ )(
2

1  for µ,...,1=k .   (29) 

Proof. By Theorem 3 the dynamical system (7a) is 

positive if and only if the conditions (28) are satisfied. If 

1)(1
n

tx +ℜ∈ , 0≥t  then 1)(2
nn

tx
−

+ℜ∈ , 0≥t  if and only if 

(29) holds. □ 

Example 2. (Continuation of Example 1) Consider the 

descriptor linear system (4) with (18). The matrices (23a) 

of the dynamical part of the descriptor linear system (4) 

with (18) satisfy the condition (28) and the matrices (23b) 

satisfy the conditions (29). Therefore, the descriptor 

system (4) with (18) is positive. 

4. Transfer matrices of positive stable 
descriptor linear systems 

Consider the descriptor linear system with regular 

pencil (6). 

Theorem 5. The transfer matrix of the descriptor system 

described by (7) and (4b) has the form 

....

)...(][

)....(][

,)(

22120

11110
1

11212

11110
1

111

2

1

1

1

µα
µ

α

µα
µ

αα

µα
µ

αα

sBsBB

sBsBBAsIAK

sBsBBAsIK

K

K
CsT

n

n

++++

+++−=

+++−=









=

−

−
(30) 

Proof. Applying the Laplace transform to (7a) and (7b) 

with zero initial conditions we obtain 

)()...()()( 111101111 sUsBsBBsXAsXs µα
µ

αα ++++=  (31a) 

and 

)()...()()( 221201212 sUsBsBBsXAsX µα
µ

α ++++= ,(31b) 

where 


∞

−==

0

111 )()]([)( dtetxtxsX
stL , )]([)( 22 txsX L= , 

)]([)( tusU L= .                      (31c) 

 (23a)

and the static part (7b) with

 A21 = [0  0  0 ],  B20 = [1]. (23b)
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Consider the fractional linear system described by
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is nonsingular and from (21) we have the dynamical part 

(7a) with 
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11A , 
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10B , 
















=

0

0

0

11B , 
















=

1

0

0

12B (23a) 

and the static part (7b) with 

]000[21 =A , ]1[20 =B .                     (23b) 

Consider the fractional linear system described by 

α

αα

1

1

1

)(
...)()(

)(
0 q

q

q
dt

tud
BtuBtAx

dt

txd
+++= ,     (24a) 

α

α

2

2

2

)(
...)()()( 0 q

q

q
dt

tud
DtuDtCxty +++= ,    (24b) 

where 
n

tx ℜ∈)( , 
m

tu ℜ∈)( , 
p

ty ℜ∈)(  are the state, 

input and output vectors and nnA ×ℜ∈ , mn
kB ×ℜ∈ , 

1,...,1,0 qk =  npC ×ℜ∈ , mp
lD ×ℜ∈ , 2,...,1,0 ql = . 

Definition 2. The fractional system (24) is called 

(internally) positive if 
n

tx +ℜ∈)( , 
p

ty +ℜ∈)(  for any initial 

conditions 
n

x +ℜ∈)0(  and all inputs 

m

k

k

dt

tud
+ℜ∈

α

α )(
 for qk ,...,1,0= , ),max( 21 qqq = , 0≥t .(25) 

Theorem 3. The fractional system (24) is positive if and 

only if 

nMA∈ , mn
kB ×

+ℜ∈  for 1,...,1,0 qk =         (26) 

and 

np
C

×
+ℜ∈ , mp

lD ×
+ℜ∈  for 2,...,1,0 ql = .      (27) 

Proof. It is well-known that if 0)( =tu  then the solution 

)(tx  of (24a) for any 
n

x +ℜ∈)0(  is nonnegative for 0≥t  

if and only if nMA∈  and )(tx  of (24a) is nonnegative 

for any )(tu  satisfying (25) if and only if the conditions 

(26) are satisfied. Note that 
p

ty +ℜ∈)( , 0≥t  for )(tu  

satisfying (25) if and only if (27) holds. □ 

Theorem 4. The fractional descriptor system (4) with 

regular pencil is positive if and only if its dynamical and 

static parts satisfy the conditions 

111 nMA ∈ , mn
kB

×
+ℜ∈ 1

1  for µ,...,1=k          (28) 

and 

11)(
21

nnn
A

×−
+ℜ∈ , mnn

kB
×−

+ℜ∈ )(
2

1  for µ,...,1=k .   (29) 

Proof. By Theorem 3 the dynamical system (7a) is 

positive if and only if the conditions (28) are satisfied. If 

1)(1
n

tx +ℜ∈ , 0≥t  then 1)(2
nn

tx
−

+ℜ∈ , 0≥t  if and only if 

(29) holds. □ 

Example 2. (Continuation of Example 1) Consider the 

descriptor linear system (4) with (18). The matrices (23a) 

of the dynamical part of the descriptor linear system (4) 

with (18) satisfy the condition (28) and the matrices (23b) 

satisfy the conditions (29). Therefore, the descriptor 

system (4) with (18) is positive. 

4. Transfer matrices of positive stable 
descriptor linear systems 

Consider the descriptor linear system with regular 

pencil (6). 

Theorem 5. The transfer matrix of the descriptor system 

described by (7) and (4b) has the form 

....

)...(][

)....(][

,)(

22120

11110
1

11212

11110
1
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α
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K
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+++−=

+++−=









=

−

−
(30) 

Proof. Applying the Laplace transform to (7a) and (7b) 

with zero initial conditions we obtain 

)()...()()( 111101111 sUsBsBBsXAsXs µα
µ

αα ++++=  (31a) 

and 

)()...()()( 221201212 sUsBsBBsXAsX µα
µ

α ++++= ,(31b) 

where 


∞

−==

0

111 )()]([)( dtetxtxsX
stL , )]([)( 22 txsX L= , 

)]([)( tusU L= .                      (31c) 

, (24a)
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is nonsingular and from (21) we have the dynamical part 

(7a) with 
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µ

αα ++++=  (31a) 

and 
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Theorem 4. The fractional descriptor system (4) with 

regular pencil is positive if and only if its dynamical and 

static parts satisfy the conditions 

111 nMA ∈ , mn
kB

×
+ℜ∈ 1

1  for µ,...,1=k          (28) 

and 

11)(
21

nnn
A

×−
+ℜ∈ , mnn

kB
×−

+ℜ∈ )(
2

1  for µ,...,1=k .   (29) 

Proof. By Theorem 3 the dynamical system (7a) is 

positive if and only if the conditions (28) are satisfied. If 

1)(1
n

tx +ℜ∈ , 0≥t  then 1)(2
nn

tx
−

+ℜ∈ , 0≥t  if and only if 

(29) holds. □ 

Example 2. (Continuation of Example 1) Consider the 
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with (18) satisfy the condition (28) and the matrices (23b) 

satisfy the conditions (29). Therefore, the descriptor 

system (4) with (18) is positive. 

4. Transfer matrices of positive stable 
descriptor linear systems 

Consider the descriptor linear system with regular 
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Theorem 5. The transfer matrix of the descriptor system 

described by (7) and (4b) has the form 
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Proof. Applying the Laplace transform to (7a) and (7b) 

with zero initial conditions we obtain 
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descriptor linear system (4) with (18). The matrices (23a) 

of the dynamical part of the descriptor linear system (4) 

with (18) satisfy the condition (28) and the matrices (23b) 
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Proof. Applying the Laplace transform to (7a) and (7b) 

with zero initial conditions we obtain 
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Proof. Applying the Laplace transform to (7a) and (7b) with 
zero initial conditions we obtain

 
sαX1(s) = A11X1(s) + (B10 + B11sα + …
sαX1(s) + B1µ sµα)U(s)

 (31a)
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sαX1(s) + B2µ sµα)U(s),
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satisfy the conditions (29). Therefore, the descriptor 

system (4) with (18) is positive. 
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Proof. Applying the Laplace transform to (7a) and (7b) 

with zero initial conditions we obtain 

)()...()()( 111101111 sUsBsBBsXAsXs µα
µ

αα ++++=  (31a) 

and 

)()...()()( 221201212 sUsBsBBsXAsX µα
µ

α ++++= ,(31b) 

where 


∞

−==

0

111 )()]([)( dtetxtxsX
stL , )]([)( 22 txsX L= , 

)]([)( tusU L= .                      (31c) 

4 



















=







−

0100

1000

0010

0001

21

1

A

E
                   (22) 

is nonsingular and from (21) we have the dynamical part 

(7a) with 
















−

−

=

100

032

012

11A , 
















=

0

0

1

10B , 
















=

0

0

0

11B , 
















=

1

0

0

12B (23a) 

and the static part (7b) with 

]000[21 =A , ]1[20 =B .                     (23b) 

Consider the fractional linear system described by 

α

αα

1

1

1

)(
...)()(

)(
0 q

q

q
dt

tud
BtuBtAx

dt

txd
+++= ,     (24a) 

α

α

2

2

2

)(
...)()()( 0 q

q

q
dt

tud
DtuDtCxty +++= ,    (24b) 

where 
n

tx ℜ∈)( , 
m

tu ℜ∈)( , 
p

ty ℜ∈)(  are the state, 

input and output vectors and nnA ×ℜ∈ , mn
kB ×ℜ∈ , 

1,...,1,0 qk =  npC ×ℜ∈ , mp
lD ×ℜ∈ , 2,...,1,0 ql = . 

Definition 2. The fractional system (24) is called 

(internally) positive if 
n

tx +ℜ∈)( , 
p

ty +ℜ∈)(  for any initial 

conditions 
n

x +ℜ∈)0(  and all inputs 

m

k

k

dt

tud
+ℜ∈

α

α )(
 for qk ,...,1,0= , ),max( 21 qqq = , 0≥t .(25) 

Theorem 3. The fractional system (24) is positive if and 

only if 

nMA∈ , mn
kB ×

+ℜ∈  for 1,...,1,0 qk =         (26) 

and 

np
C

×
+ℜ∈ , mp

lD ×
+ℜ∈  for 2,...,1,0 ql = .      (27) 

Proof. It is well-known that if 0)( =tu  then the solution 

)(tx  of (24a) for any 
n

x +ℜ∈)0(  is nonnegative for 0≥t  

if and only if nMA∈  and )(tx  of (24a) is nonnegative 

for any )(tu  satisfying (25) if and only if the conditions 

(26) are satisfied. Note that 
p

ty +ℜ∈)( , 0≥t  for )(tu  

satisfying (25) if and only if (27) holds. □ 

Theorem 4. The fractional descriptor system (4) with 

regular pencil is positive if and only if its dynamical and 

static parts satisfy the conditions 

111 nMA ∈ , mn
kB

×
+ℜ∈ 1

1  for µ,...,1=k          (28) 

and 

11)(
21

nnn
A

×−
+ℜ∈ , mnn

kB
×−

+ℜ∈ )(
2

1  for µ,...,1=k .   (29) 

Proof. By Theorem 3 the dynamical system (7a) is 

positive if and only if the conditions (28) are satisfied. If 

1)(1
n

tx +ℜ∈ , 0≥t  then 1)(2
nn

tx
−

+ℜ∈ , 0≥t  if and only if 

(29) holds. □ 

Example 2. (Continuation of Example 1) Consider the 

descriptor linear system (4) with (18). The matrices (23a) 

of the dynamical part of the descriptor linear system (4) 

with (18) satisfy the condition (28) and the matrices (23b) 

satisfy the conditions (29). Therefore, the descriptor 

system (4) with (18) is positive. 

4. Transfer matrices of positive stable 
descriptor linear systems 

Consider the descriptor linear system with regular 

pencil (6). 

Theorem 5. The transfer matrix of the descriptor system 

described by (7) and (4b) has the form 
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(30) 

Proof. Applying the Laplace transform to (7a) and (7b) 

with zero initial conditions we obtain 

)()...()()( 111101111 sUsBsBBsXAsXs µα
µ

αα ++++=  (31a) 

and 

)()...()()( 221201212 sUsBsBBsXAsX µα
µ

α ++++= ,(31b) 

where 


∞

−==
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111 )()]([)( dtetxtxsX
stL , )]([)( 22 txsX L= , 

)]([)( tusU L= .                      (31c) 
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is nonsingular and from (21) we have the dynamical part 

(7a) with 
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12B (23a) 

and the static part (7b) with 

]000[21 =A , ]1[20 =B .                     (23b) 

Consider the fractional linear system described by 
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αα

1

1
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...)()(

)(
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q

q
dt

tud
BtuBtAx

dt

txd
+++= ,     (24a) 
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q
dt

tud
DtuDtCxty +++= ,    (24b) 

where 
n

tx ℜ∈)( , 
m

tu ℜ∈)( , 
p

ty ℜ∈)(  are the state, 

input and output vectors and nnA ×ℜ∈ , mn
kB ×ℜ∈ , 

1,...,1,0 qk =  npC ×ℜ∈ , mp
lD ×ℜ∈ , 2,...,1,0 ql = . 

Definition 2. The fractional system (24) is called 

(internally) positive if 
n

tx +ℜ∈)( , 
p

ty +ℜ∈)(  for any initial 

conditions 
n

x +ℜ∈)0(  and all inputs 

m

k

k

dt

tud
+ℜ∈

α

α )(
 for qk ,...,1,0= , ),max( 21 qqq = , 0≥t .(25) 

Theorem 3. The fractional system (24) is positive if and 

only if 

nMA∈ , mn
kB ×

+ℜ∈  for 1,...,1,0 qk =         (26) 

and 

np
C

×
+ℜ∈ , mp

lD ×
+ℜ∈  for 2,...,1,0 ql = .      (27) 

Proof. It is well-known that if 0)( =tu  then the solution 

)(tx  of (24a) for any 
n

x +ℜ∈)0(  is nonnegative for 0≥t  

if and only if nMA∈  and )(tx  of (24a) is nonnegative 

for any )(tu  satisfying (25) if and only if the conditions 

(26) are satisfied. Note that 
p

ty +ℜ∈)( , 0≥t  for )(tu  

satisfying (25) if and only if (27) holds. □ 

Theorem 4. The fractional descriptor system (4) with 

regular pencil is positive if and only if its dynamical and 

static parts satisfy the conditions 

111 nMA ∈ , mn
kB

×
+ℜ∈ 1

1  for µ,...,1=k          (28) 

and 

11)(
21

nnn
A

×−
+ℜ∈ , mnn

kB
×−

+ℜ∈ )(
2

1  for µ,...,1=k .   (29) 

Proof. By Theorem 3 the dynamical system (7a) is 

positive if and only if the conditions (28) are satisfied. If 

1)(1
n

tx +ℜ∈ , 0≥t  then 1)(2
nn

tx
−

+ℜ∈ , 0≥t  if and only if 

(29) holds. □ 

Example 2. (Continuation of Example 1) Consider the 

descriptor linear system (4) with (18). The matrices (23a) 

of the dynamical part of the descriptor linear system (4) 

with (18) satisfy the condition (28) and the matrices (23b) 

satisfy the conditions (29). Therefore, the descriptor 

system (4) with (18) is positive. 

4. Transfer matrices of positive stable 
descriptor linear systems 

Consider the descriptor linear system with regular 

pencil (6). 

Theorem 5. The transfer matrix of the descriptor system 

described by (7) and (4b) has the form 
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)...(][

)....(][

,)(

22120

11110
1

11212

11110
1
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2
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(30) 

Proof. Applying the Laplace transform to (7a) and (7b) 

with zero initial conditions we obtain 

)()...()()( 111101111 sUsBsBBsXAsXs µα
µ

αα ++++=  (31a) 

and 

)()...()()( 221201212 sUsBsBBsXAsX µα
µ

α ++++= ,(31b) 

where 


∞

−==

0

111 )()]([)( dtetxtxsX
stL , )]([)( 22 txsX L= , 

)]([)( tusU L= .                      (31c) 
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is nonsingular and from (21) we have the dynamical part 

(7a) with 
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1

0

0

12B (23a) 

and the static part (7b) with 

]000[21 =A , ]1[20 =B .                     (23b) 

Consider the fractional linear system described by 

α

αα

1

1

1

)(
...)()(

)(
0 q

q

q
dt

tud
BtuBtAx

dt

txd
+++= ,     (24a) 

α

α

2

2

2

)(
...)()()( 0 q

q

q
dt

tud
DtuDtCxty +++= ,    (24b) 

where 
n

tx ℜ∈)( , 
m

tu ℜ∈)( , 
p

ty ℜ∈)(  are the state, 

input and output vectors and nnA ×ℜ∈ , mn
kB ×ℜ∈ , 

1,...,1,0 qk =  npC ×ℜ∈ , mp
lD ×ℜ∈ , 2,...,1,0 ql = . 

Definition 2. The fractional system (24) is called 

(internally) positive if 
n

tx +ℜ∈)( , 
p

ty +ℜ∈)(  for any initial 

conditions 
n

x +ℜ∈)0(  and all inputs 

m

k

k

dt

tud
+ℜ∈

α

α )(
 for qk ,...,1,0= , ),max( 21 qqq = , 0≥t .(25) 

Theorem 3. The fractional system (24) is positive if and 

only if 

nMA∈ , mn
kB ×

+ℜ∈  for 1,...,1,0 qk =         (26) 

and 

np
C

×
+ℜ∈ , mp

lD ×
+ℜ∈  for 2,...,1,0 ql = .      (27) 

Proof. It is well-known that if 0)( =tu  then the solution 

)(tx  of (24a) for any 
n

x +ℜ∈)0(  is nonnegative for 0≥t  

if and only if nMA∈  and )(tx  of (24a) is nonnegative 

for any )(tu  satisfying (25) if and only if the conditions 

(26) are satisfied. Note that 
p

ty +ℜ∈)( , 0≥t  for )(tu  

satisfying (25) if and only if (27) holds. □ 

Theorem 4. The fractional descriptor system (4) with 

regular pencil is positive if and only if its dynamical and 

static parts satisfy the conditions 

111 nMA ∈ , mn
kB

×
+ℜ∈ 1

1  for µ,...,1=k          (28) 

and 

11)(
21

nnn
A

×−
+ℜ∈ , mnn

kB
×−

+ℜ∈ )(
2

1  for µ,...,1=k .   (29) 

Proof. By Theorem 3 the dynamical system (7a) is 

positive if and only if the conditions (28) are satisfied. If 

1)(1
n

tx +ℜ∈ , 0≥t  then 1)(2
nn

tx
−

+ℜ∈ , 0≥t  if and only if 

(29) holds. □ 

Example 2. (Continuation of Example 1) Consider the 

descriptor linear system (4) with (18). The matrices (23a) 

of the dynamical part of the descriptor linear system (4) 

with (18) satisfy the condition (28) and the matrices (23b) 

satisfy the conditions (29). Therefore, the descriptor 

system (4) with (18) is positive. 

4. Transfer matrices of positive stable 
descriptor linear systems 

Consider the descriptor linear system with regular 

pencil (6). 

Theorem 5. The transfer matrix of the descriptor system 

described by (7) and (4b) has the form 

....

)...(][

)....(][

,)(

22120

11110
1

11212

11110
1

111
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1

1

1

µα
µ

α

µα
µ

αα
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µ

αα

sBsBB

sBsBBAsIAK
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K
CsT

n

n
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+++−=

+++−=









=

−

−
(30) 

Proof. Applying the Laplace transform to (7a) and (7b) 

with zero initial conditions we obtain 

)()...()()( 111101111 sUsBsBBsXAsXs µα
µ

αα ++++=  (31a) 

and 

)()...()()( 221201212 sUsBsBBsXAsX µα
µ

α ++++= ,(31b) 

where 


∞

−==

0

111 )()]([)( dtetxtxsX
stL , )]([)( 22 txsX L= , 

)]([)( tusU L= .                      (31c) 

 (31c)

From (31a) we have

 
X1(s) = [ In1

sα ¡ A11]
–1

(B10 + B11sα + …

X1(s) + B1µ sµα)U(s)
 (32)

and substituting (32) into (31b) we obtain

X2(s) = 
(

A21[ In1
sα ¡ A11]

–1
(B10 + B11sα + …

X1(s) + B1µ sµα) + B20 + B21sα + … + B2µ sµα
) 

U(s).
 (33)

Substitution of (32) and (33) into

 Y(s) = L[ y(t)] = C
X1(s)
X2(s)

 (34)

yields (30). □

Example 3. Compute the transfer matrix of the descriptor sys-
tem (4) with (18). Using (30) and taking into account (23) we 
obtain
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T(s) = C
[ In1

sα ¡ A11]
–1
(B10 + B11sα + B12s2α)

A21[ In1
sα ¡ A11]

–1
(B10 + B11sα + B12s2α) + B20

= [2  0  1  0]

1  0  0
0  1  0
0  0  1
0  0  0

 sα + 2 –1 0
 –2 sα + 3 0
 0 0 sα ¡ 2

–1

¢

1
0

s2α

 + 

0
0
0

–1

 =  2sα + 6
s2α + 5sα + 4

 + sα.

 (35)

The same result we obtain using the formulas (32) and (17). In 
the first case we have

 

T(s) = C [Esα ¡ A]–1B

= [2  0  1  0]

 sα + 2 –1 0 0
 –2 sα + 3 0 0
 0 sα + 3 –1 sα

 0 0 0 –1

–1 0
0
0

–1

=  2sα + 6
s2α + 5sα + 4

 + sα

 (36)

and in the second case

 

T(s) = C1[Ir sα ¡ A1]
–1B1 + C2[Nsα ¡ In ¡ r]

–1B2

= [2  0]
 sα + 2 –1
 –2 sα + 3

–1
1
0

 

+ [1  0]
 –1 sα

 0 –1

–1
0

–1
  =  2sα + 6

s2α + 5sα + 4
 + sα.

 (37)

Note that

 Tsp(s) =  2sα + 6
s2α + 5sα + 4

 (38)

is the strictly proper part and Tp(s) = sα is the polynomial part 
of the transfer function of the descriptor system.

Definition 3. The positive fractional descriptor linear system 
(4) with u(t) = 0 is called asymptotically stable if

 

5 

From (31a) we have 

)()...(][)( 11110
1

111 1
sUsBsBBAsIsX n
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µ

αα +++−= − (32) 

and substituting (32) into (31b) we obtain 
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11212 1
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(33) 

Substitution of (32) and (33) into 









==

)(

)(
)]([)(

2

1

sX

sX
CtysY L                          (34) 

yields (30). □ 

Example 3. Compute the transfer matrix of the descriptor 

system (4) with (18). Using (30) and taking into account 

(23) we obtain 
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(35) 

The same result we obtain using the formulas (32) and 

(17). In the first case we have 

α

αα

α

α

α

α

α

s
ss

s

s

s

s

BAEsCsT

+
++

+
=



















−



















−

−

+−

−+

=

−=

−

−

45

62

1

0

0

1

1000

100

0032

0012

]0102[

][)(

2

1

1

   (36) 

and in the second case 
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Note that 

45

62
)(

2 ++

+
=

αα

α

ss

s
sTsp                         (38) 

is the strictly proper part and α
ssTp =)(  is the 

polynomial part of the transfer function of the descriptor 

system. 

Definition 3. The positive fractional descriptor linear 

system (4) with u(t) = 0 is called asymptotically stable if 

0)(lim =
→∞

tx
t

 for all 
n

x +ℜ∈)0( .               (40) 

Theorem 6. The positive fractional descriptor linear 

system (4) is asymptotically stable if and only if nMA ∈1  

and all coefficients of the characteristic polynomial 

01
1

11 ...]det[ 1

1

1

1
asasasAsI

n
n

n
n ++++=− −

−        (41) 

are positive, i.e. 0>ka  for 1,...,1,0 1 −= nk . 

Proof. The proof is given in [15]. 

Lemma 1. If the matrix nMA ∈1  is asymptotically stable 

(is Hurwitz) then the matrix 

)(][ 11

1

1
1 sAsI

nn
n

×− ℜ∈−                     (42) 

has positive coefficients. 

Proof. The proof is given in [15]. 

Theorem 7. If the positive fractional descriptor linear 

system (4) is asymptotically stable then all coefficients of 

the transfer matrix (30) are positive. 

Proof. By Lemma 1 if the positive system is 

asymptotically stable then all coefficients of the matrix 

(41) are positive and by Theorem 3 the system (24) is 

positive if and only if the conditions (26) and (27) are 

satisfied. In this case all coefficients of the transfer matrix 

(30) are positive. □ 

Remark 1. Note that all coefficients of the transfer matrix 

(30) are positive if and only if all coefficients of the 

transfer matrix (6) are positive. 

5. Global stability of nonlinear systems 

Consider the nonlinear system shown in Fig. 1 

consisting of linear fractional descriptor part described by 

. (39)

Theorem 6. The positive fractional descriptor linear system (4) 
is asymptotically stable if and only if A1 2 Mn and all coeffi-
cients of the characteristic polynomial
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From (31a) we have 
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Substitution of (32) and (33) into 
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yields (30). □ 

Example 3. Compute the transfer matrix of the descriptor 

system (4) with (18). Using (30) and taking into account 

(23) we obtain 
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The same result we obtain using the formulas (32) and 

(17). In the first case we have 
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and in the second case 
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Note that 

45

62
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s
sTsp                         (38) 

is the strictly proper part and α
ssTp =)(  is the 

polynomial part of the transfer function of the descriptor 

system. 

Definition 3. The positive fractional descriptor linear 

system (4) with u(t) = 0 is called asymptotically stable if 

0)(lim =
→∞

tx
t

 for all 
n

x +ℜ∈)0( .               (40) 

Theorem 6. The positive fractional descriptor linear 

system (4) is asymptotically stable if and only if nMA ∈1  

and all coefficients of the characteristic polynomial 

01
1

11 ...]det[ 1

1

1

1
asasasAsI

n
n

n
n ++++=− −

−        (41) 

are positive, i.e. 0>ka  for 1,...,1,0 1 −= nk . 

Proof. The proof is given in [15]. 

Lemma 1. If the matrix nMA ∈1  is asymptotically stable 

(is Hurwitz) then the matrix 

)(][ 11

1

1
1 sAsI

nn
n

×− ℜ∈−                     (42) 

has positive coefficients. 

Proof. The proof is given in [15]. 

Theorem 7. If the positive fractional descriptor linear 

system (4) is asymptotically stable then all coefficients of 

the transfer matrix (30) are positive. 

Proof. By Lemma 1 if the positive system is 

asymptotically stable then all coefficients of the matrix 

(41) are positive and by Theorem 3 the system (24) is 

positive if and only if the conditions (26) and (27) are 

satisfied. In this case all coefficients of the transfer matrix 

(30) are positive. □ 

Remark 1. Note that all coefficients of the transfer matrix 

(30) are positive if and only if all coefficients of the 

transfer matrix (6) are positive. 

5. Global stability of nonlinear systems 

Consider the nonlinear system shown in Fig. 1 

consisting of linear fractional descriptor part described by 

 (40)

are positive, i.e. ak > 0 for k = 0, 1, …, n1 ¡ 1.

Proof. The proof is given in [15].

Lemma 1. If the matrix A1 2 Mn is asymptotically stable (is 
Hurwitz) then the matrix
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From (31a) we have 
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and substituting (32) into (31b) we obtain 
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Note that 

45

62
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+
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α
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is the strictly proper part and α
ssTp =)(  is the 

polynomial part of the transfer function of the descriptor 

system. 

Definition 3. The positive fractional descriptor linear 

system (4) with u(t) = 0 is called asymptotically stable if 

0)(lim =
→∞

tx
t

 for all 
n

x +ℜ∈)0( .               (40) 

Theorem 6. The positive fractional descriptor linear 

system (4) is asymptotically stable if and only if nMA ∈1  

and all coefficients of the characteristic polynomial 

01
1

11 ...]det[ 1

1

1

1
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n
n

n
n ++++=− −

−        (41) 

are positive, i.e. 0>ka  for 1,...,1,0 1 −= nk . 

Proof. The proof is given in [15]. 

Lemma 1. If the matrix nMA ∈1  is asymptotically stable 

(is Hurwitz) then the matrix 

)(][ 11

1

1
1 sAsI

nn
n
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has positive coefficients. 

Proof. The proof is given in [15]. 
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Remark 1. Note that all coefficients of the transfer matrix 

(30) are positive if and only if all coefficients of the 

transfer matrix (6) are positive. 
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Consider the nonlinear system shown in Fig. 1 

consisting of linear fractional descriptor part described by 
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Proof. The proof is given in [15].

Theorem 7. If the positive fractional descriptor linear system 
(4) is asymptotically stable then all coefficients of the transfer 
matrix (30) are positive.

Proof. By Lemma 1 if the positive system is asymptotically 
stable then all coefficients of the matrix (41) are positive and 
by Theorem 3 the system (24) is positive if and only if the con-
ditions (26) and (27) are satisfied. In this case all coefficients 
of the transfer matrix (30) are positive. □

Remark 1. Note that all coefficients of the transfer matrix (30) 
are positive if and only if all coefficients of the transfer matrix 
(6) are positive.

5. Global stability of nonlinear systems

Consider the nonlinear system shown in Fig. 1 consisting of lin-
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Proof. Note that the global stability of the descriptor 

nonlinear system is determined by the stability of the 

dynamical part (7a) with the transfer function (45). By 

Theorem 8 the nonlinear system with the dynamical part 

is globally stable if the Nyquist plot of  )( ωjTsp  of the 

 (44)

and its Nyquist plot Tsp( jω) = P(ω) + jQ(ω).

Theorem 9. The nonlinear feedback system consisting of the 
fractional positive descriptor asymptotically stable linear part 
(4) and the nonlinear element with the characteristic u = f (e) 
satisfying the condition (42) is globally stable if the Nyquist 
plot of Tsp( jω) = P(ω) + jQ(ω) of the linear part is located on 

the right-hand side of the circle – 1
k1

, – 1
k2

.

Proof. Note that the global stability of the descriptor nonlinear 
system is determined by the stability of the dynamical part (7a) 
with the transfer function (44). By Theorem 8 the nonlinear 
system with the dynamical part is globally stable if the Nyquist 
plot of Tsp( jω) of the linear part is located on the right-hand 

side of the circle – 1
k1

, – 1
k2

. □

Example 4. Check the global stability of the nonlinear system 
shown in Fig. 1 with the linear part (18) and the nonlinear el-
ement with the characteristic u = f (e) satisfying the condition 
(42). The strictly proper transfer function of the linear part has 
the form
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linear part is located on the right-hand side of the circle 









−−

21

1
,

1

kk
. □ 

Example 4. Check the global stability of the nonlinear 

system shown in Fig. 1 with the linear part (18) and the 

nonlinear element with the characteristic )(efu =  

satisfying the condition (43). The strictly proper transfer 

function of the linear part has the form 

45

62
)(

2 ++

+
=

αα

α

ss

s
sTsp                       (46) 

and its Nyquist plot 

)()(
4)(5)(

6)(2
)(

2
ωω

ωω

ω
ω

αα

α

jQP
jj

j
jTsp +=

++

+
= ,  (47) 

for }0.1 ,5.0 ,33.0 ,25.0{=α  is shown in Fig. 3. 

Note that the Nyquist plot of the linear part is located in 

the fourth quarter of the plane ))(),(( ωω QP . Therefore, 

by Theorem 9 the nonlinear system is globally 

asymptotically stable for all nonlinear elements with 

characteristic )(efu =  located in the first and third 

quarter (Fig. 2) since for any positive 012 ≥> kk  the 

Nyquist plot is located on the right-hand side of the circle 









−−

21

1
,

1

kk
. 

 

 

Fig. 4. Nyquist plot of (47). 

6. Concluding remarks 

The global stability of nonlinear systems with negative 

feedbacks and positive descriptor linear parts has been 

analyzed. The characteristics )(efu =  of the nonlinear 

element satisfy the assumption (43) and the linear parts 

described by the equations (4) are  asymptotically stable. 

It has been shown that the nonlinear systems are globally 

asymptotically stable if the Nyquist plots of the linear 

parts are located on the right-hand side of the circles 









−−

21

1
,

1

kk
. This theorem is an extension of the 

Kudrewicz theorem presented in [20] for nonlinear 

systems with standard linear parts. The considerations  

have been illustrated by numerical examples. 
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Proof. Note that the global stability of the descriptor 

nonlinear system is determined by the stability of the 

dynamical part (7a) with the transfer function (45). By 

Theorem 8 the nonlinear system with the dynamical part 

is globally stable if the Nyquist plot of  )( ωjTsp  of the 
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lowing theorem.
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Example 4. Check the global stability of the nonlinear 

system shown in Fig. 1 with the linear part (18) and the 

nonlinear element with the characteristic )(efu =  

satisfying the condition (43). The strictly proper transfer 

function of the linear part has the form 
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for }0.1 ,5.0 ,33.0 ,25.0{=α  is shown in Fig. 3. 

Note that the Nyquist plot of the linear part is located in 

the fourth quarter of the plane ))(),(( ωω QP . Therefore, 

by Theorem 9 the nonlinear system is globally 

asymptotically stable for all nonlinear elements with 

characteristic )(efu =  located in the first and third 

quarter (Fig. 2) since for any positive 012 ≥> kk  the 

Nyquist plot is located on the right-hand side of the circle 
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6. Concluding remarks 

The global stability of nonlinear systems with negative 

feedbacks and positive descriptor linear parts has been 

analyzed. The characteristics )(efu =  of the nonlinear 

element satisfy the assumption (43) and the linear parts 

described by the equations (4) are  asymptotically stable. 

It has been shown that the nonlinear systems are globally 

asymptotically stable if the Nyquist plots of the linear 

parts are located on the right-hand side of the circles 
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Kudrewicz theorem presented in [20] for nonlinear 

systems with standard linear parts. The considerations  

have been illustrated by numerical examples. 
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for α = {0.25, 0.33, 0.5, 1.0} is shown in Fig. 3.
Note that the Nyquist plot of the linear part is located in the 

fourth quarter of the plane (P(ω), Q(ω)). Therefore, by Theo-
rem 9 the nonlinear system is globally asymptotically stable for 
all nonlinear elements with characteristic u = f (e) located in the 
first and third quarter (Fig. 2) since for any positive k2 > k1 ¸ 0 
the Nyquist plot is located on the right-hand side of the circle 

– 1
k1

, – 1
k2

.

6. Concluding remarks

The global stability of nonlinear systems with negative feed-
backs and positive descriptor linear parts has been analyzed. 
The characteristics u = f (e) of the nonlinear element satisfy the 
assumption (43) and the linear parts described by the equations 
(4) are asymptotically stable. It has been shown that the non-
linear systems are globally asymptotically stable if the Nyquist 
plots of the linear parts are located on the right-hand side of the 

circles – 1
k1

, – 1
k2

. This theorem is an extension of the Kudre-

wicz theorem presented in [20] for nonlinear systems with stan-
dard linear parts. The considerations have been illustrated by 
numerical examples.
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