Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The energy transfer process of selective laser melting (SLM) is highly complex. In this work, experiments were carried out to study the effects of SLM on the microstructure and mechanical properties of 18Ni300 martensitic steel. With the increase in laser power, the grain size of the cladding layer decreases and the microstructure becomes dense. The side hardness is higher than upper surface hardness, and the tensile strength and elongation both increase first and then decrease. When the laser power is 300 W and the scanning speed is 1,000 mm/s, the comprehensive mechanical properties are the best, as the tensile strength, microhardness, elongation at break, and elongation after fracture are 1,217 MPa, 37.5%, 37.6%, and 8.93%, respectively. EBSD (Electron Backscatter Diffraction) shows that columnar crystals grow along the growth direction (z direction) in XOZ and YOZ planes, and the grains show weak texture. There are many small-angle grain boundaries, and the grain sizes are <10 μm.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
64--71
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
- Dept. of Material Science and Engineering, School of Materials Science and Engineering, Jiang Su University of Science and Technology, zhenjiang 212100, China
- Dept. of Material Science and Engineering, School of Intelligent Manufacturing and Control Engineering, Shanghai Polytechnic University, Shanghai 201209, China
autor
- Dept. of General Dentistry, Shsnghai Xuhui District Dental Center, Shanghai 200031, China
autor
- Cancer Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
autor
- Nursing Department, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
autor
- Dept. of Material Science and Engineering, School of Materials Science and Engineering, Jiang Su University of Science and Technology, zhenjiang 212100, China
Bibliografia
- [1] Tan C, Zhou K, Ma W, Zhang P, Liu M, Kuang T. Microstructural evolution, nanoprecipitation behavior and mechanical properties of selective laser melted high-performance grade 300 maraging steel. Mater Des. 2017;134:23–34.
- [2] Bhardwaj T, Shukla M. Effect of laser scanning strategies on texture, physical and mechanical properties of laser sintered maraging steel. Mater Sci Eng. 2018;734:102–9.
- [3] Debroy T, Wei HL, Zuback JS, Mukherjee T, Elmer JW, Milewski JO, et al. Additive manufacturing of metallic components – Process, structure and properties. Prog Mater Sci. 2018;92:112–224.
- [4] Wang Z, Beese AM. Stress state-dependent mechanics of additively manufactured 304L stainless steel: part 1-characterization and modeling of the effect of stress state and texture on microstructural evolution. Mater Sci Eng A. 2019;743:811–23.
- [5] Choo H, Sham KL, Bohling J, Ngo A, Xiao X, Ren Y, et al. Effect of laser power on defect, texture, and microstructure of a laser powder bed fusion processed 316L stainless steel. Mater Des. 2018;164:107534.
- [6] Takajo S, Brown DW, Clausen B, Gray III GT, Knapp CM, Martinez DT, et al. Spatially resolved texture and microstructure evolution of additively manufactured and gas gun deformed 304L stainless steel investigated by neutron diffraction and electron backscatter diffraction. Powder Diff. 2018;33(2):141–6.
- [7] Gribbin S, Ghorbanpour S, Ferreri NC, Bicknell J, Tsukrov I, Knezevic M. Role of grain structure, grain boundaries, crystallographic texture, precipitates, and porosity on fatigue behavior of Inconel 718 at room and elevated temperatures. Mater Charact. 2019;149:184–97.
- [8] Popovich VA, Borisov EV, Popovich AA, Sufiiarov V.sh, Masaylo DV, Alzina L. Functionally graded Inconel 718 processed by additive manufacturing: crystallographic texture, anisotropy of microstructure and mechanical properties. Mater Des. 2017;114:441–9.
- [9] Geiger F, Kunze K, Etter T. Tailoring the texture of IN738LC processed by selective laser melting (SLM) by specific scanning strategies. Mater Sci Eng A Struct Mater Prop Misrostruc Process. 2016;661:240–6.
- [10] Honnige JR, Colegrove PA, Ahmad B, Fitzpatrick ME, Ganguly S, Lee TL, et al. Residual stress and texture control in Ti-6Al-4V wire + arc additively manufactured intersections by stress relief and rolling. Mater Des. 2018;150:193–205.
- [11] Sridharan N, Chaudhary A, Nandwana P, Babu SS. Texture evolution during laser direct metal deposition of Ti-6Al-4V. J Miner Met Mater Soc. 2016;68(3):1–6.
- [12] Hrabe N, White R, Lucon E. Effects of internal porosity and crystallographic texture on Charpy absorbed energy of electron beam melting titanium alloy (Ti-6Al-4V). Mater Sci Eng A. 2018;742:269–77.
- [13] Kučerová L, Zetková I, Jandová A, Bystrianský M. Microstructural characterisation and in-situ straining of additive-manufactured X3NiCoMoTi 18-9-5 maraging steel. Mater Sci Eng A. 2019;750:70–80.
- [14] Bai Y, Zhao C, Wang D, Wang H. Evolution mechanism of surface morphology and internal hole defect of 18Ni300 maraging steel fabricated by selective laser melting. J Mater Process Technol. 2022;299:117328.
- [15] Riccardo C, Jannis NL, Ausonio T, Maurizio V. Aging behaviour and mechanical performance of 18-Ni 300 steel processed by selective laser melting. Met Open Access Metall J. 2016;6(9):218.
- [16] Y Kawabe, K Nakazawa, M Kanao, S Muneki. Delayed failure crack and fracture toughness of 18 Ni maraging steel with aging structure at low temperature. Tetsu-to-Hagane. 2010;60(12):1613–23.
- [17] Yang K, Qu WS, Kong FY, Su GY. Effects of solution treatment temperature on grain growth and mechanical properties of high strength 18%Ni cobalt free maraging steel. Mater Sci Technol. 2003;19(1):117–24.
- [18] Z Jie, L Shuai Q Wei, Y Shi, L Wang, L Guo. Cracking behavior and inhibiting process of inconel 625 alloy formed by selective laser melting. Rare Met. 2015:39(011):961–966.
- [19] Kempen K, Yasa E, Thijs L, Kruth JP, Van Humbeeck J. Microstructure and mechanical properties of selective laser melted 18Ni-300 steel. Phys Procedia. 2011;12:255–63.
- [20] Sohail M, Han SW, Na SJ, Gumenyuk A, Rethmeier M. Characteristics of weld pool behavior in laser welding with various power inputs. Weld World. 2014;58(3):269–77.
- [21] Loulou T, Artyukhin EA, Bardon JP. Estimation of thermal contract resistance during the first stages of metal solidification process: II—experimental setup and results. Int J Heat Mass Transfer. 1999;42(12):2129–42.
- [22] Zhou X, Li K, Zhang D, Liu X, Ma J, Liu W, et al. Textures formed in a CoCrMo alloy by selective laser melting. J Alloys Compd. 2015;631:153–64.
- [23] Kajima Y, Takaichi A, Kittikundecha N, Nakamoto T, Kimura T, Nomura N, et al. Effect of heat-treatment temperature on microstructures and mechanical properties of Co–Cr–Mo alloys fabricated by selective laser melting. Mater Sci Eng A. 2018;726:21–31.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2adb55e0-10bc-49cc-a618-32a063d7efcc