Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Podczas badań numerycznych problemu eksploatacji uszczelnień szczelinowych dwupierścieniowych określono warunki pracy uszczelnienia wpływające na zachowanie stabilności statycznej i dynamicznej zespołu wirującego przy utrzymaniu podstawowej funkcji uszczelnienia, separacji przestrzeni o różnych ciśnieniach.
Wydawca
Czasopismo
Rocznik
Tom
Strony
88--98
Opis fizyczny
Bibliogr. 36 poz., rys.
Twórcy
autor
- Wydział Mechaniki Obliczeniowej im. Włodzimierza Marcinkowskiego, Uniwersytet w Sumach
autor
- Wydział Mechaniki Obliczeniowej im. Włodzimierza Marcinkowskiego, Uniwersytet w Sumach
autor
- Katedra Maszyn i Urządzeń Energetycznych, Politechnika Śląska
Bibliografia
- [1] Martsynkovskyy V. A. Rotordynamics of centrifugal machines. Sumy: Sumy State University Publishing House; 2012.
- [2] Karassik I. J., Messina J. P., Cooper P., Heald C. C. Pump handbook. 4th ed. New York: McGraw-Hill; 2008.
- [3] Martsynkovskyy V. A., Tarelnyk V. B., Antoszewski B., Martsynkovskyy V.,S., Radionov OV. Ecological safety of compressor and pump equipment operation. Sumy: Sumy State University Publishing House; 2018.
- [4] Pozovnyi O., Deineka A., Lisovenko D. Calculation of hydrostatic forces of multi-gap seals and its dependence on shaft displacement. Lect Notes Mech Eng. Cham: Springer; 2020. p. 661–70. https://doi.org/10.1007/978-3- 030-22365-6_66.
- [5] Etinger S. M. Experience of adjustment and development in operation of feed pumps of ultrahigh pressure type SVP-220-280 at Cherepetskaya GRES. Steam Gas Turb Constr 1957;5:155–77.
- [6] Martsinkovsky V., Yurko V., Tarelnik V., Filonenko Y. Designing thrust sliding bearings of high bearing capacity. Procedia Eng 2012;39:148–56. https://doi.org/ 10.1016/j. proeng.2012.07.019.
- [7] Gulich J. F. Centrifugal pumps. Fourth. Cham: Springer International Publishing; 2020. https://doi.org/10.1007/978- 3-030-14788-4.
- [8] Martsynkovskyy V. A. Annular seals: theory and practice. Sumy: Sumy State University; 2005.
- [9] Martsynkovskyy V. A. Hydrodynamics and strength of centrifugal pumps. Moscow: Mechanical Engineering; 1970.
- [10] Zahorulko A., Kundera C., Hudkov S. Determination of mechanical characteristics of stuffing box packings. IOP Conf Ser Mater Sci Eng 2017;233. https://doi. org/10.1088/ 1757–899X/233/1/012039.
- [11] Verhoeven J., Feng T., Neumer T. Rotor instability of a single stage centrifugal pump, supersynchronous whirling at almost twice the operating speed. a case hist. Proc, 1st Int Symp Pump Noise Vib 1993:457–68.
- [12] Marscher W. D, Onari M. M. Solving super-synchronous vibration on a double suction pump. 28th Int Pump Users Symp 2012:1–39. https://doi.org/10.21423/R16920.
- [13] Childs D. W. Turbomachinery rotordynamics with case studies. Minter Spring; 2013.
- [14] Bin Najeeb O. A., Childs D. W. Static and rotordynamic analysis of a plain annular (liquid) seal in the laminar regime with a swirl brake for three clearances. J Eng Gas Turbines Power 2019:141. https://doi.org/10.1115/1.4042650.
- [15] Gu Q., Yang J., Zhang W., Zhang M. On the rotordynamic performance of an annular gas seal with self-adaptive jet slots: comparisons to the swirl brake and shunt injection. Tribol Int 2022;176:107898. https://doi.org/10.1016/j.
- [16] Zhang X., Jiao Y., Qu X., Zhao Z., Huo G., Huang K. Inlet preswirl dependence research on three different labyrinth seals. Tribol Int 2022:107929. https://doi.org/ 10.1016/j. triboint.2022.107929.
- [17] Lindsey W. T., Childs D. W. The effects of converging and diverging axial taper on the rotordynamic coefficients of liquid annular pressure seals: theory versus experiment. Vol. 3B 15th Bienn Conf Mech Vib Noise — Acoust Vib Rotating Mach. American Society of Mechanical Engineers 1995:1139–47. https://doi.org/ 10.1115/DETC1995–0509.
- [18] Zhang W, Chen L, Yang J, Yang J, Li C. Static instability of the smooth annular seals with choked/unchoked flow. Tribol Int 2020;144:106120. https://doi.org/ 10.1016/j.triboint. 2019.106120.
- [19] Sun D., Li S.-Y., Zhao H., Fei C.-W. Numerical investigation on static and rotor- dynamic characteristics of convergent- tapered and divergent-tapered hole-pattern gas damper seals. 12:2324 Materials 2019. https://doi. org/10.3390/ma12142324.
- [20] Pozovnyi O., Zahorulko A., Krmela J., Artyukhov A., Krmelov ´a V. Calculation of the characteristics of the multi-gap seal of the centrifugal pump, in dependence on the chambers’ sizes. Manuf Technol 2020;20:361–7. https:// doi.org/10.21062/ mft.2020.048.
- [21] Amoser M., Staubli T. Three-dimensional flow phenomena in labyrinth seals. Ninth Conf Fluid Mach, Budapest; 1991, p. 1–9.
- [22] Arghir M., Amoser M., Dueymes E., al. Activit´e de la division “ Applications industrielles de la m´ecanique des fluides “. L’influence de joints annulaires lisses sur le comportement dynamique de ligne d’arbres de machines hydrauliques “. La Houille Blanc 1997;83:14–28. https://doi. org/10.1051/lhb/1997046.
- [23] Zahorulko A. V., Lee Y .- B. Computational analysis for scallop seals with sickle grooves, part I: leakage performance. Mech Syst Signal Process 2021;147:107024. https://doi. org/10.1016/j.ymssp.2020.107024.
- [24] Baek S., Ahn J. Optimizing the geometric parameters of a straight-through labyrinth seal to minimize the leakage flow rate and the discharge coefficient. Energies 2021;14:705. https://doi.org/10.3390/en14030705.
- [25] Zhao W., Nielsen T. K., Billdal J. T. Effects of cavity on leakage loss in straight- through labyrinth seals. IOP Conf Ser Earth Environ Sci 2010;12:012002. htt ps://doi.org/10.1088/1755– 1315/12/1/012002.
- [26] Hur M. S., Lee S. I., Moon S. W., Kim T.S., Kwak J. S., Kim D. H., et al. Effect of clearance and cavity geometries on leakage performance of a stepped labyrinth seal. Processes 2020;8:1496. https://doi.org/10.3390/pr8111496.
- [27] Cao H., Zhang W., Yin L., Yang L. Numerical study of leakage and rotordynamic performance of staggered labyrinth seals working with supercritical carbon dioxide. Shock Vib 2022;2022:1–17. https://doi.org/10.1155/2022/3896212.
- [28] Zhang W., Yang J., Tian Y., Cao H., Gu J. Research on the leakage and dynamic characteristics of a new kind of radial annular seal and comparisons with labyrinth seals. Proc Inst Mech Eng Part A J Power Energy 2013;227:261–71. https://doi. org/10.1177/0957650912474388.
- [29] Jiang J., Yang Y., Huang W., Li Y. Numerical and experimental investigation on uniformity of pressure loads in labyrinth seal. 168781401772845 Adv Mech Eng 2017;9. https://doi. org/10.1177/1687814017728455.
- [30] Arghir M., Defaye C., Frene J. The Lomakin effect in annular gas seals under choked flow conditions. J Eng Gas Turbines Power 2007;129:1028–34. https://doi.org/ 10.1115/1.2434344.
- [31] Arghir M., Mariot A. About the negative direct static stiffness of highly eccentric straight annular seals. J Eng Gas Turbines Power 2015;137:1–9. https://doi.org/ 10.1115/1.4029624.
- [32] Alford J. S. Protecting turbomachinery from self-excited rotor whirl. J Eng Power 1965;87:333–43. https://doi. org/10.1115/1.3678270.
- [33] Vance J. M., Laudadio F. J. Experimental measurement of Alford’s force in axial flow turbomachinery. J Eng Gas Turbines Power 1984;106:585–90. https://doi.org/ 10.1115/1.3239610.
- [34] Yada K., Uchiumi M., Funazaki K. Thomas/Alford force on a partial-admission turbine for the rocket engine turbopump. J Fluids Eng 2019:141. https://doi.org/ 10.1115/1.4040466.
- [35] Wu T., San Andr´es L. Gas labyrinth seals: on the effect of clearance and operating conditions on wall friction factors – a CFD investigation. Tribol Int 2019;131: 363–76. https://doi.org/10.1016/j.triboint.2018.10.046.
- [36] Zahorulko A. Pozovnyi O. Peczkis G.CFD study of radial and tangential forces in two-annular seals, Tribology International 184, 108449, 2023.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2ad0f880-439d-4707-960f-231c5976b6bc