PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimal support design for galleries located in poor quality rock mass and under the influence of mining works

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, the sup port of two general galleries located in poor quality rock mass and subjected to the influence of high thickness coal layer exploitations is designed and optimized. The process is carried out in four phases:A first preliminary support is defined employing different geomechanical classifications and applying the New Austrian Tunnelling Method (NATM) using bolts and shotcrete.An instrumentation campaign is carried out with the goal of analysing the behaviour of the support. The study noticed the failure of the support due to the time of placement of the different elements.A back-analysis using the Flac and Phases software has allowed the evaluation of the properties of the rock mass and the support, the study of the influence of the time of placement on the component elements (bolts and shotcrete), and the redefinition of that support.Subsequently, a new support is designed and optimized through numerical modeling after the start of mining without experience in these sizes of sublevel caving that caused the failure of the previously designed support. The new support is formed by yieldable steel arches that are more suitable to withstand the stresses generated by nearby mining work.
Rocznik
Strony
851--867
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr.
Twórcy
  • University of León, Campus De Vegazana, S/N, 24071 León, Spain
  • University of Oviedo, Construction and Manufacturing Engineering, Spain
  • University of Oviedo, Exploitation and Prospecting Mines, Spain
  • University of Oviedo, Exploitation and Prospecting Mines, Spain
  • Polytechnic University of Madrid, 28040 Madrid, Spain
  • University of Oviedo, Construction and Manufacturing Engineering, Spain
Bibliografia
  • [1] Alejano L.R., Rodríguez-Dono A., Veiga M., 2012. Plastic radii and longitudinal deformation profiles of tunnels excavated in strain-softening rock masses. Tunnelling and Underground Space Technology 30, 169-182.
  • [2] Barton N., 1996. Investigation, Design and Support of Major Road Tunnels in Jointed Rock using NMT Principles. IX Australian Tunnelling Conference: “Breaking New Ground”, Sydney, Australia, 145-159.
  • [3] Bieniawski Z.T., 1989. Engineering Rock Mass Classification: a Complete Manual for Engineers and Geologists in Mining. Civil, and Petroleum Engineering, Ed. John Wiley & Sons, New York, USA.
  • [4] Carranza-Torres C., Rysdahl B., Kasim M., 2013. On the elastic analysis of a circular lined tunnel considering the delayed installation of the support, International Journal of Rock Mechanics and Mining Sciences 67, 57-85.
  • [5] Fahimifar A., Ranjbarnia M., 2009. Analytical approach for the design of active grouted rockbolts in tunnel stability based on convergence-confinement method. Tunnelling and Underground Space Technology 24, 363-375.
  • [6] Golser J., Mussger K., 1978. The New Austrian Tunnelling Method (NATM) contractual aspects, Tunnelling Under Difficult Conditions. Proceedings of the International Tunnel Symposium, Tokyo, Pergamon Press, Oxford, 387-392.
  • [7] Golser J., 1979. Another view of the NATM. Tunnels & Tunnelling, March 1979, 11, 41.
  • [8] Itasca Consulting Group, 2008. Flac.
  • [9] Janin J.P., Dias D., Emeriault F., Kastner R., Bissonnais H.L., Guilloux A., 2015. Numerical back-analysis of the southern Toulon tunnel measurements: A comparison of 3D and 2D approaches. Engineering Geology 195, 42-52.
  • [10] Kovari K., 1994. Erroneous Concepts behind the New Austrian Tunnelling Method, Tunnels & Tunnelling International 26, 11, 38-42.
  • [11] Malkowski P., Niedbalski Z., Majcherczyk T., 2016. Roadway design efficiency indices for hard coal mines. Acta Geodyn. Geomater. 13, 2 (182), 201-211.
  • [12] Majcherczyk T., Niedbalski Z., Malkowski P., Bednarek L., 2014. Analysis of yielding steel arch support with rock bolts in mine roadways stability aspect. Arch. Min. Sci. 59 (3), 641-654.
  • [13] Miro S., Köning M., Hartmann D., Schanz T., 2015. A probabilistic analysis of subsoil parameters uncertainty impacts on tunnel-induced ground movements with a back-analysis study. Computers and Geotechnics 68, 38-53.
  • [14] Müller L., 1978. The reasons for unsuccessful applications of the New Austrian Tunnelling Method. Tunnelling Under Difficult Conditions, Proceedings of the International Tunnel Symposium, Tokyo, Pergamon Press, 67-72.
  • [15] Müller L., 1990. Removing the misconceptions on the New Austrian Tunnelling Method. Tunnels & Tunnelling, Summer 1990, special issue, 22, 15-18.
  • [16] Niedbalski Z., Malkowski P., Majcherczyk T., 2013. Monitoring of stand-and-roof-bolting support: design optimization. Acta Geodyn. Geomater. 10 (2), 215-226.
  • [17] Oreste P.P., Pella D., 1997. Modelling progressive hardening of shotcrete in convergence-confinement approach to tunnel design. Tunnelling and Underground Space Technology 12, 425-431.
  • [18] Prusek S., 2010. Review of support systems and methods for prediction of gateroads deformation. In Proceedings of conference: School of Underground Mining, At Yalta, Ukraine.
  • [19] Rabcewicz L., 1965. The New Austrian Tunnelling Method. Part one, Part Three, Water Power, 19-24.
  • [20] Rabcewicz L., Golser J., 1973. Principles of dimensioning the supporting system for the “New Austrian Tunnelling Method”. Water Power, 88-93.
  • [21] Rocscience Inc., 2014. Phase2 sofware.
  • [22] Shin Y.J., Song K.I., Lee I.M., Cho G.C., 2011. Interaction between tunnel supports and ground convergence-Consideration of seepage forces. International Journal of Rock Mechanics and Mining Sciences 48, 394-405.
  • [23] Vázquez-Silva D., 2014. Support design in Diseño del sostenimiento en deep and tectonized deposits. Doctoral Thesis, University of Oviedo, Oviedo, Spain.
  • [24] Wang H.N., Utili S., Jiang M.J., 2014. An analytical approach for the sequential excavation of axisymmetric lined tunnels in viscoelastic rock. International Journal of Rock Mechanics and Mining Sciences 68, 85-106.
  • [25] Wang Z., Qiao C., Song C., Xu J., 2014. Upper bound limit analysis of support pressures of shallow tunnels in layered jointed rock strata. Tunnelling and Underground Space Technology 43, 171-183.
  • [26] Yuen Wong L.N., Fang Q., Zhang D., 2013. Mechanical analysis of circular tunnels supported by steel sets embedded in primary linings. Tunnelling and Underground Space Technology 37, 80-88.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2acf1b05-8290-4a1f-ad6e-be7f53608038
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.