PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Digital image processing (DIP) application on the evaluation of ironrich heavy mineral concentrates produced from river sand using a sequential mineral processing approach

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, the iron-rich heavy mineral concentrate production from river sand as a byproduct of an alternative resource by gravity, magnetic separation, and flotation methods were investigated in detail. For the physical separation of the sample and increasing the Fe2O3 content, a shaking table and a wet high-intensity magnetic separator were used, respectively. The gravity and magnetic separation experiments included rougher, cleaner, and scavenger circuits. In the flotation experiments, cationic flotation with ethylenediamine under acidic conditions, and anionic flotation with sodium oleate under alkaline conditions were performed. The iron and silica content of the products obtained were determined by digital image processing (DIP) methods and compared with the classical analytical procedures. Finally, a flow chart was proposed for the processing of the ore according to the optimum enrichment parameters were determined from the experiments. The results obtained in this study show that it is possible to produce an iron-rich heavy mineral concentrate with Fe2O3 grade and recovery rate of 79.13% and 57.81%, respectively, in addition to a potential feed for the production of quartz sand and feldspar concentrates.
Słowa kluczowe
Rocznik
Strony
21--35
Opis fizyczny
Bibliogr. 39 poz., rys. kolor.
Twórcy
autor
  • Istanbul University-Cerrahpasa Mining Engineering Department, Buyukcekmece, Istanbul, Turkey
autor
  • Istanbul University-Cerrahpasa Mining Engineering Department, Buyukcekmece, Istanbul, Turkey
  • Canakkale Onsekiz Mart University Mining Engineering Department, Canakkale, Turkey
  • Istanbul University-Cerrahpasa Mining Engineering Department, Buyukcekmece, Istanbul, Turkey
Bibliografia
  • ALDRICH, C., MARAIS, C., SHEAN, B.J., CILLIERS, J.J., 2010. Online monitoring and control of froth flotation systems with machine vision: A review. Int. J. Miner. Process. 96, 1-13.
  • ANAMERIC, B., KAWATRA, S.K., 2008. Direct iron smelting reduction processes. Miner. Process. Extr. Metall. Rev. 30, 1-51.
  • BHARGAVA, O.P., 2006. Iron Ore, Sample Preparation and Analysis of. In: Meyers, R.A., (eds.) Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation. Wiley.
  • BILLINGSLEY, F.C., 1970. Applications of digital image processing. Appl. Opt. 9, 289-299.
  • BU, X., EVANS, G., XIE, G., PENG, Y., ZHANG, Z., NI, C., GE, L., 2017. Removal of fine quartz from coal-series kaolin by flotation. Appl. Clay Sci. 143, 437-444.
  • CAO, L., 2006. Singular value decomposition applied to digital image processing. Division of Computing Studies, Arizona State University Polytechnic Campus, Mesa, Arizona State University Polytechnic Campus.
  • CAO, Z., ZHANG, Y., CAO, Y., 2013. Reverse flotation of quartz from magnetite ore with modified sodium oleate. Miner. Process. Extr. Metall. Rev. 34, 320-330.
  • CHRISTIE, T., BRATHWAITE, B., 1997. Mineral commodity report 15—Iron. NZ Min 22, 22-37.
  • DEATH, D.L., CUNNINGHAM, A.P., POLLARD, L.J., 2008. Multi-element analysis of iron ore pellets by laser-induced breakdown spectroscopy and principal components regression. Spectrochim. Acta B 63, 763-769.Original Sample
  • EL-SALMAWY, M.S., NAKAHIRO, Y., WAKAMATSU, T., 1993. The role of alkaline earth cations in flotation separation of quartz from feldspar. Miner. Eng. 6, 1231-1243.
  • ENDO, Y., SAKAO, N., 1980. Application of High-frequency Inductively Coupled Plasma Emission Spectrometry to Analysis of Iron Ores. Tetsu-to-Hagane 66, 1395-1400.
  • FILIPPOV, L.O., SEVEROV, V.V., FILIPPOVA, I.V., 2014. An overview of the beneficiation of iron ores via reverse cationic flotation. Int. J. Miner. Process. 127, 62-69.
  • GULCAN, E., GULSOY, O.Y., 2017. Performance evaluation of optical sorting in mineral processing–A case study with quartz, magnesite, hematite, lignite, copper and gold ores. Int. J. Miner. Process. 169, 129-141.
  • HACIFAZLIOGLU, H., 2011. Methods used in the beneficiation of silica sand and comparison of flotation and magnetic separation in terms of iron removal. Scientific Mining Journal 50, 35-48.
  • IMAGE J., 2020. ImageJ. http://rsb.info.nih.gov/ij/ (Accessed 02 October 2020).
  • JORDENS, A., CHENG, Y.P., WATERS, K.E., 2013. A review of the beneficiation of rare earth element bearing minerals. Miner. Eng. 41, 97-114.
  • KHORRAM, F., MEMARIAN, H., TOKHMECHI, B., SOLTANIAN-ZADEH, H., 2011. Limestone chemical components estimation using image processing and pattern recognition techniques. Journal of Mining and Environment 2, 126-135.
  • KOSE, M., TURELI, T. K., 1986. The required properties of the quartz sands for glass making and their beneficiation methods and a case study of Yozgat Sarikaya quartzites. Scientific Mining Journal 25, 21-28.
  • KOSMULSKI, M., 2009. Surface charging and points of zero charge. CRC Press, Florida, USA.
  • KURSUN, I., 2009. Particle size and shape characteristics of Kemerburgaz quartz sands obtained by sieving, laser diffraction, and digital image processing methods. Miner. Process. Extr. Metall. Rev. 30, 346-360.
  • KURSUN, I., TERZI, M., OZDEMIR, O., 2018. Evaluation of digital image processing (DIP) in analysis of magnetic separation fractions from Na-feldspar ore. Arab. J. Geosci. 11, 462.
  • LI, C., SUN, H., BAI, J., LI, L., 2010. Innovative methodology for comprehensive utilization of iron ore tailings: Part 1. The recovery of iron from iron ore tailings using magnetic separation after magnetizing roasting. J. Hazard. Mater. 174, 71-77.
  • LIU, S., ZHAO, Y., WANG, W., WEN, S. 2014. Beneficiation of a low-grade, hematite-magnetite ore in China. Miner. Metall. Process. 31, 136-142.
  • MARAS, H.H., MARAS, S.S., YILDIZ, F., 2010. An overview of medical image processing methods. Afr. J. Biotechnol. 9, 3666-3675.
  • MILONJIĆ, S.K., KOPEČNI, M.M., ILIĆ, Z.E., 1983. The point of zero charge and adsorption properties of natural magnetite. J. Radioanal. Nucl. Chem. 78, 15-24.
  • MOOLMAN, D.W., ALDRICH, C., VAN DEVENTER, J.S.J., STANGE, W.W., 1994. Digital image processing as a tool for on-line monitoring of froth in flotation plants. Miner. Eng. 7, 1149-1164.
  • OZDEMIR, O., KURSUN UNVER, I., TERZI, M., YILMAZ, K., 2016. An investigation of digital image processing (DIP) method for analysis of grade of feldspar ore based on color differences. In: Bascetin, A., Kursun, I., Ozdemir, O. (eds.) Proceedings of 6th International Conference on Computer Applications in the Minerals Industries, 55, 1-4.
  • PEREZ, C.A., ESTÉVEZ, P.A., VERA, P.A., CASTILLO, L.E., ARAVENA, C.M., SCHULZ, D.A., MEDINA, L.E., 2011. Ore grade estimation by feature selection and voting using boundary detection in digital image analysis. Int. J. Miner. Process. 101, 28-36.
  • RAHMAN, M.A., ZAMAN, M.N., BISWAS, P.K., SULTANA, S., NANDY, P.K., 2015. Physical separation for upgradation of valuable minerals: A study on sands of the Someswari river. Bangladesh Journal of Scientific and Industrial Research 50, 53-58.
  • RAJIB, M., ZAMAN, M.M., KABIR, M.Z., DEEBA, F., RANA, S.M., 2009. Physical upgradation and characterization of river silica of Bangladesh to be used as glass sand. In: Proceedings of International Conference on Geoscience for Global Development, 192-196.
  • RAY, N., NAYAK, D., DASH, N., RATH, S.S., 2018. Utilization of low-grade banded hematite jasper ores: recovery of iron values and production of ferrosilicon. Clean Technol. Envir. 20, 1761-1771.
  • SEIFELNASSR, A.A., MOSLIM, E.M., ABOUZEID, A.Z.M., 2013. Concentration of a Sudanese low-grade iron ore. Int. J. Miner. Process. 122, 59-62.
  • SHENG, L., ZHANG, T., WANG, K., TANG, H., LI, H., 2015. Quantitative analysis of Fe content in iron ore via external calibration in conjunction with internal standardization method coupled with LIBS. Chem. Res. Chin. Univ. 31, 107-111.35 Physicochem. Probl. Miner. Process., 57(3), 2021, 21-35
  • SINGH, V., RAO, S.M., 2006. Application of image processing in mineral industry: a case study of ferruginous manganese ores. Miner. Process. Extr. Metall. Rev. 115, 155-160.
  • SOUSA, R., FUTURO, A., FIÚZA, A., LEITE, M.M., 2020. Pre-concentration at crushing sizes for low-grade ores processing–Ore macro texture characterization and liberation assessment. Miner. Eng. 147.
  • SRIVASTAVA, U., KAWATRA, S.K., 2009. Strategies for processing low-grade iron ore minerals. Miner. Process. Extr. Metall. Rev. 30, 361-371.
  • STANFORD, R.L., MEREDITH, D.L., SPEARS, D.R., 1992. Computer vision applications in mineral processing research. In: Conference Record of the 1992 IEEE Industry Applications Society Annual Meeting, 2013-2019.
  • TERZI, M., 2017. Development of new processes for beneficiation of Isparta region rare earth elements. Ph.D. Thesis, Istanbul University, Istanbul, Turkey.
  • UBALDINI, S., PIGA, L., FORNARI, P., MASSIDDA, R., 1996. Removal of iron from quartz sands: A study by column leaching using a complete factorial design. Hydrometallurgy 40, 369-379
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2ac994dc-0dbf-45e8-9496-94869a134a78
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.