PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A hybrid approach for fault diagnosis of spur gears using Hu invariant moments and artificial neural networks

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Achieving a reliable fault diagnosis for gears under variable operating conditions is a pressing need of industries to ensure productivity by averting unwanted breakdowns. In the present work, a hybrid approach is proposed by integrating Hu invariant moments and an artificial neural network for explicit extraction and classification of gear faults using time-frequency transforms. The Zhao-Atlas-Marks transform is used to convert the raw vibrations signals from the gears into time-frequency distributions. The proposed method is applied to a single-stage spur gearbox with faults created using electric discharge machining in laboratory conditions. The results show the effectiveness of the proposed methodology in classifying the faults in gears with high accuracy.
Rocznik
Strony
451--464
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wykr., wzory
Twórcy
  • National Engineering College, Department of Mechanical Engineering, Kovilpatti - 628 503, Tamil Nadu, India
autor
  • National Engineering College, Department of Mechanical Engineering, Kovilpatti - 628 503, Tamil Nadu, India
  • Hindustan Institute of Technology and Science, Department of Mechanical Engineering, Chennai – 603103, Tamil Nadu, India
  • National Engineering College, Department of Mechanical Engineering, Kovilpatti - 628 503, Tamil Nadu, India
Bibliografia
  • [1] Li, G., Fangyi, L., Haohua, L., Dehao, D. (2018). Fault Features Analysis of a Compound Planetary Gear Set with Damaged Planet Gears. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 232(9), 1586-1604.
  • [2] Charley, J., Bodovillé, G., Degallaix, G. (2001). Analysis of Braking Noise and Vibration Measurements by Time-Frequency Approaches. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 215(112), 1381-1400.
  • [3] Chaari, R., Mohamed, T. K., Maher, B., Fakher, C., Mohamed, H. (2016). Dynamic Analysis of Gearbox Behaviour in Milling Process: Non-Stationary Operations. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 230(19), 3372-3388.
  • [4] Urbanek, J., Barszcz, T., Uhl, T. (2012). Comparison of advanced signal-processing methods for roller bearing faults detection. Metrology and Measurement Systems, 19(4), 715-726.
  • [5] Zimroz, R., Urbanek, J., Barszcz, T., Bartelmus, W., Millios, F., Martin, N. (2011). Measurement of instantaneous shaft speed by advanced vibration signal processing - Application to wind turbine gearbox. Metrology and Measurement Systems, 18(4), 701-712.
  • [6] Su, Z., Yaoming, Z., Minping, J., Feiyun, X., Jianzhong, H. (2011). Gear Fault Identification and Classification of Singular Value Decomposition Based on Hilbert-Huang Transform. Journal of Mechanical Science and Technology, 25(2), 267-272.
  • [7] Krishnakumari, A., Elayaperumal, A. (2013). Application of Discrete Wavelet Transform and Zhao-Atlas-Marks Transforms in Non-Stationary Gear Fault Diagnosis. Journal of Mechanical Science and Technology, 27(3), 641-647.
  • [8] Sun, R., Zhibo, Y., Xuefeng, C., Shaohua, T., Yong, X. (2018). Gear Fault Diagnosis Based on the Structured Sparsity Time-Frequency Analysis. Mechanical Systems and Signal Processing, 102, 346-363.
  • [9] Zhang, X., Jianshe, K., Hongzhi, T., Jianmin, Z. (2015). A New Gerabox Fault Diagnosis Method Based on Lucy-Richardson Deconvolution. Transactions of the Canadian Society for Mechanical Engineering, 39(3), 593-603.
  • [10] Afia, A., Chemseddine, R., Djamel, B. (2018). Gear Fault Diagnosis Using Autogram Analysis. Advances in Mechanical Engineering, 10(12), 1-11.
  • [11] Guan, Y., Juanjuan, S., Ming, L., Dan-Sorin, N. (2019). Gearbox Fault Diagnosis via Generalized Velocity Synchronous Fourier Transform and Order Analysis. Transactions of the Canadian Society for Mechanical Engineering, 43(2), 153-163.
  • [12] Juan, J.S., Miguel, D., Roque, A.O., Rene, D.J.R. (2018). Diagnosis Methodology for Identifying Gearbox Wear Based on Statistical Time Feature Reduction. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 232(15), 2711-2722.
  • [13] Krishnakumari, A., Elayaperumal, A., Saravanan, M., Arvindan, C. (2017). Fault Diagnostics of Spur Gear Using Decision Tree and Fuzzy Classifier. International Journal of Advanced Manufacturing Technology, 89(9-12), 3487-3494.
  • [14] Dhamande, L.S., Chaudhari, M.B. (2018). Compound Gear-Bearing Fault Feature Extraction Using Statistical Features Based on Time-Frequency Method. Measurement, 125, 63-77.
  • [15] Zhang, C., Zhongxiao, P., Shuai, C., Zhixiong, L., Jianguo, W. (2018). A Gearbox Fault Diagnosis Method Based on Frequency-Modulated Empirical Mode Decomposition and Support Vector Machine. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 232(2), 369-380.
  • [16] Vamsi, I., Sabareesh, G.R., Penumakala, P.K. (2019). Comparison of Condition Monitoring Techniques in Assessing Fault Severity for a Wind Turbine Gearbox under Non-Stationary Loading. Mechanical Systems and Signal Processing, 124, 1-20.
  • [17] Saravanan, N., Ramachandran, K.I. (2010). Incipient Gear Box Fault Diagnosis Using Discrete Wavelet Transform (DWT) for Feature Extraction and Classification Using Artificial Neural Network (ANN).Expert Systems with Applications, 37(6), 4168-4181.
  • [18] Wang, C.C., Yuan, K., Chin, C.L. (2013). Gear Fault Diagnosis in Time Domains via Bayesian Networks. Transactions of the Canadian Society for Mechanical Engineering, 37(3), 665-672.
  • [19] Dworakowski, Z., Dziedziech, K., Jabłonski, A. (2018). A novelty detection approach to monitoring of epicyclic gearbox health. Metrology and Measurement Systems, 25(3), 459-473.
  • [20] Rajagopalan, S., Restrepo, J.A., Aller, J.M., Habetler T.G., Harley, R.G. (2008). Non stationary motor fault detection using recent quadratic time-frequency representations. IEEE Transactions on Industrial applications, 44(3), 735-744.
  • [21] Hlawatsch, F., Boudreaux-Bartels, G.F. (1992). Linear and quadratic time-frequency signal representations, IEEE Signal Processing Magazine, 9(2), 21-67.
  • [22] Ming-Kuei, H. (1962). Visual Pattern Recognition by Moment Invariants. IRE Transactions on Information Theory, 8(2), 179-187.
  • [23] Barreiro, J., Castejón, M., Alegre, E., Hernández, L.K. (2008). Use of Descriptors Based on Moments from Digital Images for Tool Wear Monitoring. International Journal of Machine Tools and Manufacture, 48(9), 1005-1013.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2ab9bbfe-2369-4eb6-87a3-8f25c9e20ba8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.