Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents the results of corrosion resistance tests carried out on titanium based composites reinforced with different TiB precipitation phase amount, dependent from boron addition in starting powder blends. Precursor powder preparation and processing parameters of conventional powder metallurgical approach influence density and obtained porosity of bulk compacts. The potentiodynamic tests performed in 0.1 M NaCl solution by the technique of linear voltammetry shows visible difference between compared composite structures. Studies have confirmed that the reinforcement phase amount and its morphology influence obtained microstructure and have important effect on the composite corrosion resistance.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1767--1770
Opis fizyczny
Bibliogr. 13 poz., rys., schem., tab.,wykr., wzory
Twórcy
autor
- Poznan University of Technology, Institute of Materials Science and Enginering, M. Sklodowska-Curie 5 Sq., 60-965 Poznan, Poland
Bibliografia
- [1] R. R. Boyer, G. Welsch, E. W. Collings, Materials Properties Handbook: Titanium Alloys, ASM International, Materials Park, OH, (1994).
- [2] K. Morsi, V. Patel, Processing and properties of titanium–titanium boride (TiBw) matrix composites: a review, J. Mater. Sci. 42 2037–2047 (2007).
- [3] K. S. Ravi Chandran, K. B. Panda, S. Sahay, TiBw-reinforced Ti composites: processing, properties, application prospects, and research needs, JOM J. Miner. Met. Mater. Soc. 56 42–48 (2004).
- [4] S. Gorsse, D. B. Miracle, Mechanical properties of Ti–6Al–4V/TiB composites with randomly oriented and aligned TiB reinforcements, Acta Mater. 51 2427–2442 (2003).
- [5] M. Zadra, L. Girardini, High-performance, low-cost titanium metal matrix composites, Materials Science and Engineering, A 608, 1, 155–163 July 2014.
- [6] Z. Yan, F. Chen, Y. Cai, Y. Zheng, Microstructure and mechanical properties of in-situ synthesized TiB whiskers reinforced titanium matrix composites by high-velocity compaction, Powder Technology 267, 309–314 (2014).
- [7] M. Selvakumar, P. Chandrasekar, M. Mohanraj, B. Ravisankar, J. N. Balaraju, Role of powder metallurgical processing and TiB reinforcement on mechanical response of Ti–TiB composites, Materials Letters 144, 58–61 (2015).
- [8] L. Ropars, M. Dehmas, S. Gourdet, J. Delfosse, D. Tricker, E. Aeby-Gautier, Structure evolutions in a Ti–6Al–4V matrix composite reinforced with TiB, characterised using high energy X-ray diffraction, Journal of Alloys and Compounds 624, 179–188 (2015).
- [9] K. Morsi, V. V. Patel, S. Naraghi, J. E. Garay, Processing of titanium–titanium boride dual matrix composites, Journal of Materials Processing Technology 196, 236–242 (2008).
- [10] A. Miklaszewski, Effect of starting material character and its sintering temperature on microstructure and mechanical properties of super hard Ti/TiB metal matrix composites, Int. Journal of Refractory Metals and Hard Materials 53, 56–60 (2015).
- [11] T. Saito, The Automotive Application of Discontinuously Reinforced TiB-Ti Composites, JOM May 2004.
- [12] Y. Liang, Y. Che, Notebook of Thermodynamic Data of Inorganic, East-north University Press, Shen yang, (1996).
- [13] Z. Xinghong, X. Qiang, H. Jiecai, V. Kvanin, Self-propagating high temperature combustion synthesis of TiB/Ti composites, Mater. Sci. Eng., A 348, 41–46 (2003).
Uwagi
EN
The research financed from the funds of the National Science Centre decision No. DEC-2014/13NST3 00601.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2ab26827-15e9-4f73-ac43-ddda4220fdaf