PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Solving fractal differential equations via fractal Laplace transforms

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The intention of this study is to investigate the fractal version of both one-term and three-term fractal differential equations. The fractal Laplace transform of the local derivative and the non-local fractal Caputo derivative is applied to investigate the given models. The analogues of both theWright function with its related definitions in fractal calculus and the convolution theorem in fractal calculus are proposed. All results in this paper have been obtained by applying certain tools such as the generalWright and Mittag-Leffler functions of three parameters and the convolution theorem in the sense of the fractal calculus. Moreover, a comparative analysis is conducted by solving the governing equation in the senses of the standard version and fractal calculus. It is obvious that when α = γ = β = 1, we obtain the same results as in the standard version.
Wydawca
Rocznik
Strony
237--250
Opis fizyczny
Bibliogr. 63 poz., wykr.
Twórcy
  • Department of Mathematics, Faculty of Science, University of Zakho, 42002 Zakho, Iraq
  • Department of Mathematics, Faculty of Science, Firat University, 23119 Elazig, Turkey
  • Department of Physics, Urmia Branch, Islamic Azad University, 63896 Urmia, Iran
  • Department of Mathematics, Faculty of Science, Firat University, 23119 Elazig, Turkey
  • Computer Science Department, Soran University, 44004 Soran, Iraq
Bibliografia
  • [1] B. Acay, E. Bas and T. Abdeljawad, Fractional economic models based on market equilibrium in the frame of different type kernels, Chaos Solitons Fractals 130 (2020), Article ID 109438.
  • [2] Z. Ali, F. Rabiei, K. Shah and T. Khodadadi, Qualitative analysis of fractal-fractional order COVID-19 mathematical model with case study of Wuhan, Alexandria Eng. J. 60 (2021), 477-489.
  • [3] A. Atangana and S. Qureshi, Modeling attractors of chaotic dynamical systems with fractal-fractional operators, Chaos Solitons Fractals 123 (2019), 320-337.
  • [4] J. W. Baish and R. K. Jain, Fractals and cancer, Cancer Res. 60 (2000), 3683-3688.
  • [5] M. T. Barlow and E. A. Perkins, Brownian motion on the Sierpiński gasket, Probab. Theory Related Fields 79 (1988), no. 4, 543-623.
  • [6] M. F. Barnsley, Fractals Everywhere, Academic Press, Boston, 2014.
  • [7] C. Cattani and G. Pierro, On the fractal geometry of DNA by the binary image analysis, Bull. Math. Biol. 75 (2013), no. 9, 1544-1570.
  • [8] M. Czachor, Waves along fractal coastlines: From fractal arithmetic to wave equations, Acta Phys. Polon. B 50 (2019), no. 4, 813-831.
  • [9] B. Davies, Integral Transforms and Their Applications, Texts Appl. Math. 41, Springer, New York, 2002.
  • [10] T. G. Dewey, Fractals in Molecular Biophysics, Oxford University, New York, 1998.
  • [11] K. Diethelm, R. Garrappa, A. Giusti and M. Stynes, Why fractional derivatives with nonsingular kernels should not be used, Fract. Calc. Appl. Anal. 23 (2020), no. 3, 610-634.
  • [12] M. A. F. dos Santos, Mittag-Leffler functions in superstatistics, Chaos Solitons Fractals 131 (2020), Article ID 109484.
  • [13] R. A. El-Nabulsi, Path integral formulation of fractionally perturbed Lagrangian oscillators on fractal, J. Stat. Phys. 172 (2018), no. 6, 1617-1640.
  • [14] K. Falconer, Fractal Geometry: Mathematical Foundations and Application, John Wiley &Sons, Chichester, 2004.
  • [15] Fatmawati and M. A. Khan, The dynamics of dengue infection through fractal-fractional operator with real statistical data, Alexandria Eng. J. 60 (2021), 321-336.
  • [16] U. Freiberg and M. Zähle, Harmonic calculus on fractals - a measure geometric approach. I, Potential Anal. 16 (2002), no. 3, 265-277.
  • [17] A. Giusti, A comment on some new definitions of fractional derivative, Nonlinear Dyn. 93 (2018), 1757-1763.
  • [18] A. K. Golmankhaneh, About Kepler’s third law on fractal-time spaces, Ain Shams Eng. J. 9 (2018), 2499-2502.
  • [19] A. K. Golmankhaneh, On the Fractal Langevin Equation, Fractal Fract. 3 (2019), Paper No. 11.
  • [20] A. K. Golmankhaneh, Statistical mechanics involving fractal temperature, Fractal Fract. 3 (2019), Paper No. 20.
  • [21] A. K. Golmankhaneh and A. S. Balankin, Sub- and super-diffusion on Cantor sets: Beyond the paradox, Phys. Lett. A 382 (2018), 960-967.
  • [22] A. K. Golmankhaneh and D. Baleanu, Diffraction from fractal grating Cantor sets, J. Modern Opt. 63 (2016), 1364-1369.
  • [23] A. K. Golmankhaneh and D. Baleanu, Non-local integrals and derivatives on fractal sets with applications, Open Phys. 14 (2016), 542-548.
  • [24] A. K. Golmankhaneh and C. Cattani, Fractal logistic equation, Fractal Fract. 3 (2019), Paper No. 41.
  • [25] A. K. Golmankhaneh and A. Fernandez, Fractal calculus of functions on Cantor Tartan spaces, Fractal Fract. 2 (2018), Paper No. 30.
  • [26] A. K. Golmankhaneh and A. Fernandez, Random variables and stable distributions on fractal Cantor sets, Fractal Fract. 3 (2019), Paper No. 31.
  • [27] A. K. Golmankhaneh, A. Fernandez, A. K. Golmankhaneh and D. Baleanu, Diffusion on middle-ς Cantor sets, Entropy 20 (2018), no. 7, Paper No. 504.
  • [28] A. K. Golmankhaneh and C. Tunc, On the Lipschitz condition in the fractal calculus, Chaos Solitons Fractals 95 (2017), 140-147.
  • [29] A. K. Golmankhaneh and C. Tunç, Sumudu transform in fractal calculus, Appl. Math. Comput. 350 (2019), 386-401.
  • [30] A. K. Golmankhaneh, C. Tunç, S. M. Nia and Ali Khalili Golmankhaneh, A review on local and non-local fractal calculus, Numer. Comput. Meth. Sci. Eng. 1 (2019), 19-31.
  • [31] A. Hussain, D. Baleanu and M. Adeel, Existence of solution and stability for the fractional order novel coronavirus (nCoV-2019) model, Adv. Difference Equ. 2020 (2020), Paper No. 384.
  • [32] K. Kavitha, V. Vijayakumar, R. Udhayakumar and K. S. Nisar, Results on the existence of Hilfer fractional neutral evolution equations with infinite delay via measures of noncompactness, Math. Methods Appl. Sci. 44 (2021), no. 2, 1438-1455.
  • [33] J. Kigami, Analysis on Fractals, Cambridge Tracts in Math. 143, Cambridge University, Cambridge, 2001.
  • [34] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Math. Stud. 204, Elsevier Science, Amsterdam, 2006.
  • [35] K.-J. Koh, H.-N. Park and K.-A. Kim, Prediction of age-related osteoporosis using fractal analysis on panoramic radiographs, Imag. SCi. Dentistry 42 (2012), Paper No. 231.
  • [36] A. M. Lopes and J. A. Tenreiro Machado, Power law behaviour in complex systems, Entropy 20 (2018), no. 9, Paper No. 671.
  • [37] B. B. Mandelbrot, The Fractal Geometry of Nature, W. H. Freeman, San Francisco, 1982.
  • [38] V. J. Martinez, Is the universe fractal?, Science 284 (1999), 445-446.
  • [39] L. Nottale, Scale Relativity and Fractal Space-Time: A New Approach to Unifying Relativity and Quantum Mechanics, Imperial College, London, 2011.
  • [40] A. Parvate and A. D. Gangal, Calculus on fractal subsets of real line. I. Formulation, Fractals 17 (2009), no. 1, 53-81.
  • [41] A. Parvate and A. D. Gangal, Calculus on fractal subsets of real line-II: Conjugacy with ordinary calculus, Fractals 19 (2011), no. 3, 271-290.
  • [42] A. Parvate, S. Satin and A. D. Gangal, Calculus on fractal curves in Rn, Fractals 19 (2011), no. 1, 15-27.
  • [43] L. Pietronero and E. Tosatti, Fractals in Physics, Elsevier, Amsterdam, 2012.
  • [44] I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Math. Sci. Eng. 198, Academic Press, San Diego, 1999.
  • [45] S. Qureshi, Periodic dynamics of rubella epidemic under standard and fractional Caputo operator with real data from Pakistan, Math. Comput. Simulation 178 (2020), 151-165.
  • [46] S. Qureshi and A. Atangana, Fractal-fractional differentiation for the modeling and mathematical analysis of nonlinear diarrhea transmission dynamics under the use of real data, Chaos Solitons Fractals 136 (2020), Article ID 109812.
  • [47] S. Qureshi and S. Aziz, Fractional modeling for a chemical kinetic reaction in a batch reactor via nonlocal operator with power law kernel, Phys. A 542 (2020), Article ID 123494.
  • [48] M. M. Raja, V. Vijayakumar and R. Udhayakumar, A new approach on approximate controllability of fractional evolution inclusions of order 1< r< 2 with infinite delay, Chaos Solitons Fractals 141 (2020), Article ID 110343.
  • [49] M. M. Raja, V. Vijayakumar and R. Udhayakumar, Results on the existence and controllability of fractional integro-differential system of order 1< r< 2 via measure of noncompactness, Chaos Solitons Fractals 139 (2020), Article ID 110299.
  • [50] T. Sandev, A. Iomin and H. Kantz, Anomalous diffusion on a fractal mesh, Phys. Rev. E 95 (2017), Article ID 052107.
  • [51] S. E. Satin, A. Parvate and A. D. Gangal, Fokker-Planck equation on fractal curves, Chaos Solitons Fractals 52 (2013), 30-35.
  • [52] M. F. Shlesinger, Fractal time in condensed matter, Ann. Rev. Phys. Chem. 39 (1988), 269-290.
  • [53] I. Sokolov, Fractals: A possible new path to diagnose and cure cancer?, Future Oncology 11 (2015), 3049-3051.
  • [54] F. H. Stillinger, Axiomatic basis for spaces with noninteger dimension, J. Math. Phys. 18 (1977), no. 6, 1224-1234.
  • [55] V. E. Tarasov, Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, Berlin, 2011.
  • [56] V. E. Tarasov, No violation of the Leibniz rule. No fractional derivative, Commun. Nonlinear Sci. Numer. Simul. 18 (2013), no. 11, 2945-2948.
  • [57] V. E. Tarasov, No nonlocality. No fractional derivative, Commun. Nonlinear Sci. Numer. Simul. 62 (2018), 157-163.
  • [58] N. H. Tuan, V. V. Tri and D. Baleanu, Analysis of the fractional corona virus pandemic via deterministic modeling, Math. Methods Appl. Sci. 44 (2021), no. 1, 1086-1102.
  • [59] V. Uchaikin and R. Sibatov, Fractional Kinetics in Space: Anomalous Transport Models, World Scientific, Hackensack, 2017.
  • [60] V. Vijayakumar and R. Udhayakumar, A new exploration on existence of Sobolev-type Hilfer fractional neutral integro-differential equations with infinite delay, Numer.Methods Partial Differential Equations 37 (2021), no. 1, 750-766.
  • [61] S. Vrobel, Fractal Time: Why a Watched Kettle Never Boils. Vol. 14, World Scientific, Hackensack, 2011.
  • [62] K. Welch, A Fractal Topology of Time: Deepening into Timelessness, Fox Finding Press, New York, 2020.
  • [63] M. Zubair, M. J. Mughal and Q. A. Naqvi, Electromagnetic Fields and Waves in Fractional Dimensional Space, Springer, Heidelberg, 2012.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2ab1332f-1a72-457f-ae4c-3bdb4ec711ed
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.