Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article addresses the problem of the presence of selected pharmaceuticals in waters by determining the state of scientific knowledge. The sources of drug residues in the aquatic environment were characterized and the most important information was collected on the toxicity measures of the most commonly used drugs, including NLPZ: (1) non-steroidal analgesics and antipyretics (diclofenac, ibuprofen, phenazone, acetaminophen, propyphenazone, indomethacin, ketoprofen, pentoxifylline, and phenacetin), (2) pharmaceuticals used to reduce blood lipid levels (bezafibrate, fenofibrate, gemfibrozil), (3) drugs used in cardiac conditions, in particular those used to lower blood pressure and treat arrhythmia (atenolol, sotalol, metoprolol), (4) antibiotics (trimethoprim, clarithromycin, amoxicillin, sulfamethoxazole, piperacillin, erythromycin, sulfadimidine, dehydrate-erythromycin, 4N-Acetylsulfamethoxazol), (5 )drugs used to treat rheumatoid arthritis (naproxen, fenoprofen), and (6) anticonvulsants, drugs used in neuropathic disorders and tranquilisers (carbamazepine, diazepam, primidone, oxazepam, temazepam). The authors reviewed research papers dealing with the indicated issue, taking into account: (1) research on the presence of pharmaceuticals in water, (2) studies on the health and environmental risk of drinking water for the presence of drug residues and their mixtures, (3) research on the effectiveness of water treatment in terms of pharmaceuticals. Gaps in scientific knowledge have been demonstrated, which are a hint for the directions of future research work.
Czasopismo
Rocznik
Tom
Strony
244--256
Opis fizyczny
Bibliogr. 78 poz., rys., tab.
Twórcy
autor
- Sądeckie Wodociągi Spółka z o.o. ul. Wincentego Pola 22 33-300 Nowy Sącz, Poland
autor
- Sądeckie Wodociągi Spółka z o.o. ul. Wincentego Pola 22 33-300 Nowy Sącz, Poland
autor
- Department of Environmental Protection, Faculty of Geology, Geophysics and Environmental Protection, AGH University of Krakow, ul. Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
- 1. Abukhadra M.R., Helmy A., Sharaf F.S., El-Meligy A., Tawhid A., Soliman A. 2020. Instantaneous oxidation of levofloxacin as toxic pharmaceutical residuals in water using clay nanotubes decorated by ZnO (ZnO/KNTs) as a novel photocatalyst under visible light source. Journal of Environmental Management, 271, 111019. DOI: 10.1016/j.jenvman.2020.111019.
- 2. Andrade J.R., Oliveira M.F., da Silva M.G.C., Vieira M.G.A. 2018. Adsorption of pharmaceuticals from water and wastewater using nonconventional lowcost materials: a review. Ind. Eng. Chem. Res., 57(9), 3103–3127. DOI: 10.1021/acs.iecr.7b05137.
- 3. Ardila P., Ferreira da Silva B., Spadoto M., Rispoli B., Azevedo E.B., Which route to take for diclofenac removal from water: Hydroxylation or direct photolysis? Journal of Photochemistry and Photobiology A: Chemistry, 382. DOI:10.1016/j. jphotochem.2019.111879.
- 4. Barceló D., Žonja B., Ginebreda A. 2020. Toxicity tests in wastewater and drinking water treatment processes: A complementary assessment tool to be on your radar. Journal of Environmental Chemical Engineering, 8(5). DOI: 10.1016/j.jece.2020.104262.
- 5. Behera S.K., Kim H.W, Oh J.E., Park H.-S. 2011. Occurrence and removal of antibiotics, hormones and several other pharmaceuticals in wastewater treatment plants of the largest industrial city of Korea. Sci Total Environ., 409, 4351–4360. DOI:10.1016/j.scitotenv.2011.07.015.
- 6. Besse J.P., Kausch Barreto C., Garric J. 2008. Exposure assessment of pharmaceuticals and their metabolites in the aquatic environment: application to the French situation and preliminary prioritization. J Human Ecol Ris Assess, 14(4), 665–95. DOI:10.1080/10807030802235078.
- 7. Boroń M., Pawlas K. 2015. Pharmaceuticals in aquatic environment-literature review. Probl. Hig. Epidemiol, 96(2), 357–363.
- 8. Berner T., Murphy M., Slesinski R. 2004. Determining the safety of chromium tripicolinate for addition to foods as a nutrient supplement. Food Chem. Toxicol., 42, 1029–1042. DOI: https://doi.org/10.1016/j.fct.2004.02.015.
- 9. Carballa M., Omil F., Lema J.M. 2008. Comparison of predicted and measured concentrations of selected pharmaceuticals, fragrances and hormones in Spanish sewage. Chemosphere, 72, 1118–23. DOI:10.1016/j.chemosphere.2008.04.034.
- 10. CBOS Foundation Center for Public Opinion Research. 2010. Using over-the-counter medications https://www.cbos.pl [accessed on 27/07/2023]
- 11. CBOS Foundation Center for Public Opinion Research, 2016: OTC drugs and dietary supplements https://www.cbos.pl [accessed on 27/07/2023]
- 12. Ciuła, J. 2022. Analysis of the effectiveness of wastewater treatment in activated sludge technology with biomass recirculation. Arch. Civ. Eng. Envir., 2, 123–134. DOI:10.2478/ACEE-2022-0020.
- 13. Ciuła J., Gaska K., Siedlarz D., Koval V. 2019. Management of sewage sludge energy use with the application of bi-functional bioreactor as an element of pure production in industry. E3S Web of Conferences 123, DOI:10.1051/e3sconf /2019123010 16.
- 14. Commission Communication to the European Parliament, the Council and the European Economic and Social Committee. 2018. A more comprehensive framework for the European Union in the field of endocrine disruptors, 07/11/2018, https://eur-lex.europa.eu [accessed on 27/07/2023] [in Polish].
- 15. Commission Communication to the European Parliament, the Council and the European Economic and Social Committee. 2019. A strategic EU approach to pharmaceutical substances in the environment, 11/03/2019, https://eur-lex.europa.eu[accessed on 27/07/2023] [in Polish].
- 16. Commission Implementing Decision (EU) 2022/679 of 19 January 2022 establishing a watch list of substances and compounds of interest for water intended for human consumption pursuant to Directive (EU) 2020/2184 of the European Parliament and of the Council
- 17. Dhaka S., Kumar R., Deep A., Kurade M.B., Ji S.W., Jeon B.-H. 2019. Metal–organic frameworks (MOFs) for the removal of emerging contaminants from aquatic environments. Coordination Chemistry Reviews. 380, 330–352. DOI: 10.1016/j.ccr.2018.10.003.
- 18. Domardzka D., Guzik U., Wojcieszyńska D. 2015. Biodegradation and biotransformation of polycyclic non-steroidal anti-inflammatory drugs. Rev Environ Sci Biotechnol, 14, 229–239. DOI 10.1007/s11157015-9364-8 [in Polish].
- 19. Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on The Quality of Water Intended for Human Consumption
- 20. European Parliament Resolution: P9_TA-PROV, 2020: Chemicals Sustainability Strategy. European Parliament resolution of 10 July 2020 on a chemicals strategy for sustainability (2020/2531 (RSP)). 0201, https://www.europarl.europa.eu [accessed on 27/07/2020] [in Polish].
- 21. Felis E., Kalka J., Sochacki A., Kowalska K., Bajkacz S., Harnisz M. 2020. Antimicrobial pharmaceuticals in the aquatic environment-occurrence and environmental implications, European Journal of Pharmacology, 866, 172813.
- 22. Fent K. 2008. Effects of pharmaceuticals on aquatic organisms. Pharmaceuticals in Environment, 175203. DOI: 10.1007/978-3-540-74664-5_12.
- 23. Gitis V., Hankins N. 2018. Water treatment chemicals: Trends and challenges. Journal of Water Process Engineering, 25, str. 34–38. DOI:10.1016/j. jwpe.2018.06.003.
- 24. Gao Q., Xu J., Bu X.H. 2019. Recent advances about metal–organic frameworks in the removal of pollutants from wastewater. Coord. Chem. Rev., 378, 17–31. DOI:10.1016/j.ccr.2018.03.015.
- 25. Godoy A.A., De Oliveira A.C., Silva J.G., De Jesus Azevedo C.C., Domingues I., Nogueira A.J.A., Kummrow F. 2019. Single and mixture toxicity of four pharmaceuticals of environmental concern to aquatic organisms, including a behavioral assessment. Chemosphere, 235, 373–382. DOI: 10.1016/j.chemosphere.2019.06.200.
- 26. Harnisz M., Kiedrzyńska E., Kiedrzyński M., Korzeniewska E. 2020. The impact of WWTP size and sampling season on the prevalence of antibiotic resistance genes in wastewater and the river system, Science of The Total Environment, 741, 140466.
- 27. Harnisz M., Korzeniewska E., Gołaś I. 2015. The Impact of a Freshwater Fish Farm on the Community of Tetracycline-Resistant Bacteria and the Structure of Tetracycline, Resistance Genes in River Water. Chemosphere, 128, 134–141.
- 28. Hong M., Wang Y., Lu G. 2020. UV-Fenton degradation of diclofenac, sulpiride, sulfamethoxazole and sulfisomidine: Degradation mechanisms, transformation products, toxicity evolution and effect of real water matrix. Chemosphere, 258, 127351. DOI:10.1016/j.chemosphere.127351.
- 29. Huang L., Mao N., Yan Q., Zhag D., Shuai Q. 2019. Magnetic covalent organic frameworks for the removal of diclofenac sodium from water. ACS Appl. Nano Mater., 3, 319–326. DOI:10.1021/ acsanm.9b01969.
- 30. Huang L., Shen R., Liu R., Q. Shuai Q. 2020. Thiolfunctionalized magnetic covalent organic frameworks by a cutting strategy for efficient removal of Hg2+ from Water. J. Hazard. Mater., 392. DOI:10.1016/j.jhazmat.2020.122320.
- 31. Huang L., Shen R., Shuai Q. 2020. Adsorptive removal of pharmaceuticals from water using metalorganic frameworks: A review. DOI: 10.1016/j.jenvman.2020.111389.
- 32. Izquierdo M., De Miguel E., Ortega M.F., Mingot J. 2015. Bioaccessibility of metals and human health risk assessmentin community urban gardens. Chemosphere, 135, 312–318, DOI: 10.1016/j.chemosphere.2015.04.079.
- 33. Jakimska-Nagórska A., Śliwka-Kaszyńska M., Reszczyńska J., Namieśnik J., Kot-Wasik A. 2014. Elucidation of transformation pathway of ketoprofen, ibuprofen, and furosemide in surface water and their occurrence in the aqueous environment using Uhplc-Qtof-Ms. Analytical and Bioanalytical Chemistry, 406, 3667–3680. DOI:10.1007/ s00216-014-7614-1.
- 34. Wu J., Man Y., Sun G., Shang L. 2018. Occurrence and Health-Risk Assessment of Trace Metals in Raw and Boiled Drinking Water from Rural Areas of China. Water, 10(5), 641. DOI:10.3390/w10050641.
- 35. Kairigo P., Ngumba E., Sundberg L-R., Gachanja A., Tuhkanen T. 2020. Occurrence of antibiotics and risk of antibiotic resistance evolution in selected Kenyan wastewaters, surface waters and sediments. Science of The Total Environment, 720, 137580. DOI:10.1016/j.scitotenv.2020.137580.
- 36. Kanakaraju D., Glass B.D., Oelgemöller M. 2018. Advanced oxidation process-mediated removal of pharmaceuticals from water: a review. J. Environ. Manag., 219, 189–207. DOI:10.1016/j.jenvman.2018.04.103.
- 37. Kicińska A., Wysowska E. 2019. Health risk related to the presence of metals in drinking water from different types of sources. Water and Environmental Journal. DOI: /10.1111/wej.12530.
- 38. Kołecka K., Gajewska M., Stepnowski P., Caban M. 2019. Spatial distribution of pharmaceuticals in conventional wastewater treatment plant with Sludge Treatment Reed Beds technology. Science of the Total Environment. 647, 149–157. DOI:10.1016/j. scitotenv.2018.07.439.
- 39. Kołtunowicz D., Sierzysko B. 2009. Assessment of the knowledge of using OTC drugs without a prescription among the inhabitants of the Bełchatów poviat and medical Staff. DOI:10.21784 / IwP.2018.009 [in Polish].
- 40. Khaleeq H., Muhammad K., Abdur Y., Riffat R., Malik N. 2020. Fate and toxicity of pharmaceuticals in water environment: An insight on their occurrence in South Asia. Journal of Environmental Management, 271, 111030. DOI:10.1016/j. jenvman.2020.111030.
- 41. Koniuszewska I., Korzeniewska E., Harnisz M., Kiedrzyńska E. 2013. The occurrence of antibioticresistance genes in the Pilica River, Poland, Ecohydrology & Hydrobiology 20(1), 1–11.
- 42. Korzeniewska E., Korzeniewska A., Harnisz M. 2013. Antibiotic resistant Escherichia coli in hospital and municipal sewage and their emission to the environment, Ecotoxicology and Environmental Safety, 91, 96–102.
- 43. Kosek K., Łuczkiewicz A., Fudala-Książek S., Jankowska K., Szopińska M., Svahn O., Tränckner J., Kaiser A., Langas V., Björklund E. 2020. Implementation of advanced micropollutants removal technologies in wastewater treatment plants (WWTPs) - Examples and challenges based on selected EU countries. Environmental Science & Policy, 112, 213–226. DOI:10.1016/j.envsci.2020.06.011.
- 44. Kot-Wasik A., Jakimska-Nagórska A., ŚliwkaKaszyńska M. 2016. Occurrence and seasonal variations of 25 pharmaceutical residues in wastewater and drinking water treatment plants. Environmental Monitoring and Assessment, 188(661), 1–13. DOI:10.1007/s10661-016-5637-0.
- 45. Kumar A., Kumar S.S., Sharma G., Al.-Muhtaseb Ala a’a H., Naushad M., Ghfar A.A., Stadlerf. J. 2019. Wide spectral degradation of Norfloxacin by Ag2 BiPO4 /BiOBr/BiFeO3 nano-assembly: Elucidating the photocatalytic mechanism under different light sources. Journal of Hazardous Materials, 364, 429–440. DOI:10.1016/j.jhazmat.2018.10.060.
- 46. Leverett D., Merrington G., Crane M., Ryan J., Wilson J. 2021. Environmental quality standards for diclofenac derived under the European Water Framework Directive: 1. Aquatic organisms. Environmental Sciences Europe, 33, 133. doi.org/10.1186/s12302-021-00574-z
- 47. Lopez E., Schumacher M., Domingo J.L. 2008. Human health risk of petroleum contaminated groundwater. Environmental Science Pollution and Control Ser. 13(3), 278–288. DOI: 10.1065/ espr2007.02.390.
- 48. Mansour F., A-Hindi R., Ayoub G.M., Ahmad M.N. 2018. The use of activated carbon for the removal of pharmaceuticals from aqueous solutions: a review. Rev. Environ. Sci. Biotechnol., 17, 109–145. DOI: 10.1080/25765299.2020.1766799.
- 49. Markovic M., Neale P.A., Nidumolu B., Kumar A. 2020. Combined toxicity of therapeutic pharmaceuticals to duckweed, Lemna minor. Ecotoxicology and Environmental Safety, 208, 111428. DOI:10.1016/j.ecoenv.2020.111428.
- 50. Murdoch K. 2015. Pharmaceutical Pollution in the Environment: Issues for Australia, New Zealand and Pacific Island countries. National Toxics Network, Australia.
- 51. Oberoi A.S., Jia Y., Zhang H., Khanal S.K., Lu H. 2019. Insights into the Fate and Removal of Antibiotics in Engineered Biological Treatment Systems: A Critical Review. Environ. Sci. Technol. 53(13), 7234–7264. DOI:10.1021/acs.est.9b01131.
- 52. Osińska A., Korzeniewska E., Harnisz M., Felis E., Bajkacz S., Jachimowicz P. 2020. Small-scale wastewater treatment plants as a source of the dissemination of antibiotic resistance genes in the aquatic environment, Journal of Hazardous Materials, 381, 121221.
- 53. Pavithra K.G., Kumar P.S., Sundar Rajan P., Saravanan A., Naushad M. 2017. Sources and impacts of pharmaceutical components in wastewater and its treatment process: a review. Korean Journal Chemical Engineering, 34, 2787–2805.
- 54. Rainsford K.D. 2009. Ibuprofen: pharmacology, efficacy and safety. Inflammopharmacol. 17, 275342. DOI:10.1007/s10787-009-0016-x.
- 55. Rizzo L., Fiorentino A., Grassi M., Attanasio D., Guida M. 2015. Advanced treatment of urban wastewater by sand filtration and graphene adsorption for wastewater reuse: Effect on a mixture of pharmaceuticals and toxicity. Journal of Environmental Chemical Engineering, 3, 122–128.
- 56. Smith E., Kamal Y. 2009. Optimizing treatment for reduction of disinfection by-product (DBP) formation Watr Science Technology. Water Supply, 9(2), 191–198. DOI:10.2166/ws.2009.120.
- 57. Sun M., Duker R.Q., Gillissen F., Van den Brink P.J., Focks A., Rico A. 2020. Influence of pH on the toxicity of ionisable pharmaceuticals and personal care products to freshwater invertebrates. Ecotoxicology and Environmental Safety, 191, 110172. DOI:10.1016/j.ecoenv.2020.110172.
- 58. Sharma G., Gupta V.K., Agarwal S., Bhogal Sangeeta, Naushad M., Kumar A., Stadler F.J. 2018. Fabrication and characterization of trimetallic nanophotocatalyst for remediation of ampicillin antibiotic. Journal of Molecular Liquids, 260, 342–350. DOI:10.1016/j.molliq.2018.03.059.
- 59. Soliu O., Ganiyu E., van Hullebusch E.D., Cretin M., Esposito G., Oturan M.A. 2015. Coupling of membrane filtration and advanced oxidation processes for removal of pharmaceutical residues: A critical review. Separation and Purification Technology, 156(3), 891–914. DOI:10.1016/j. seppur.2015.09.059.
- 60. Thomas M.A, Klaper R.D. 2012. Psychoactive Pharmaceuticals Induce Fish Gene Expression Profiles Associated with Human Idiopathic Autism. PLoSONE, 7(6), e32917.
- 61. Ukić Š., Sigurnjak M., Cvetnić M., Markić M., Novak Stankoy M., Rogošić B., Rasulev B., Lončarić Božić A., Kušić H., Bolanča T. 2019. Toxicity of pharmaceuticals in binary mixtures: Assessment by additive and non-additive toxicity models. Ecotoxicology and Environmental Safety, 185, 109696.
- 62. US EPA. 1989. Risk Assessment Guidance for Superfund, vol. 1: Human Health Evaluation Manual. Part A. Interim. Final. EPA/540/1-89/002. Washington, DC. USA: Office of Emergency and Remedial Response, US EPA.
- 63. US EPA. 1991. Risk Assessment Guidance for Superfund, 1: Human Health Evaluation Manual. Part B. Development of Risk-based Preliminary Remediation Goals. Interim. EPA/540R-92/003. Publication 9285.7-01B. Washington, DC. USA: Office of Emergency and Remedial Response, US EPA.US EPA 2002: Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites. OSWER 9355. 4–24. Washington, DC, USA: Office of Solid Waste and Emergency Response, US EPA.
- 64. US EPA. 2011. Exposure Factors Handbook: 2011Edition.EPA/600/R‐090/052F, Sep. 2011
- 65. US EPA. 2012. Edition of the Drinking Water Standards and Health Advisories. US Environmental Protection Agency. Publication EPA 822-S-12-001 https://rais.ornl.gov [accessed on 27/07/2023].
- 66. US EPA. 2018. Edition of the Drinking Water Standards and Health Advisories Tables. US Environmental Protection Agency. Publication EPA.
- 67. Wacławek S., Lutzebc H.L., Grübel K., Padil V.V.T., Černík M., Dionysiou D.D. 2017. Chemistry of persulfates in water and wastewater treatment: A review. Chemical Engineering Journal, 330(15), str. 44–62. DOI:10.1016/j.cej.2017.07.132.
- 68. Wiewiórska I. 2023a. Impact of variable technological and quality factors on the efficiency of filtration processes using DynaSand filters and Lamella separator. Arch. Civ. Eng. Envir., 16(2), 189–200. DOI:10.2478/acee-2023-0027.
- 69. Wiewiórska I. 2023b. The role of selected technological processes in drinking water treatment. Arch. Civ. Eng. Envir., 16(2), 177–187. DOI:10.2478/acee-2023-0028.
- 70. Wysowska E., Kicińska A. 2021. Assessment of health risks with water consumption in terms of content of selected organic xenobiotics. Desalination and Water Treatment, 234, 1–14. DOI:10.5004/dwt.2021.27720.
- 71. Wysowska E., Kicińska A. 2022. Assessment of health safety related to inhalation of volatile organic compounds present in fumes of water delivered through the public distribution system. Desalination and Water Treatment, 270, 206–216. DOI: 10.5004/ dwt.2022.28781.
- 72. Xu Y., Liu T., Zhang Y., Ge F., Steel R.M., Sun L. 2017. Advances in technologies for pharmaceuticals and personal care products removal. J. Mater. Chem., 5, 12001–12014, DOI:10.1039/C7TA03698A.
- 73. Yang M., Fei Y., Yu Y., Ma Z., Li H. 2012. Health risk assessment of groundwater pollution- a case study of typical city in North China plain. Journal of Earth Science, 23(3), 335–348. DOI:10.1007/s12583-012-0260-7.
- 74. Yu F., Li Y., Han S., Ma J. 2016. Adsorptive removal of antibiotics from aqueous solution using carbon materials. Chemosphere. 153, 365–385. DOI:10.1016/j.chemosphere.2016.03.083.
- 75. Zwiener C., Seeger S., Glauner T., Frimmel F.H. 2002. Metabolites from the biodegradation of pharmaceutical residues of ibuprofen in biofilm reactors and batch experiments. Anal. Bioanal. Chem., 372, 569–575. DOI:10.1007/s00216-001-1210-x.
- 76. https://comptox.epa.gov/ [accessed on 27/07/2023]
- 77. http://www.chemspider.com [accessed on 27/07/2023]
- 78. https://www.wody.gov.pl/aktualnosci/1059-wodypolskie-o-problemie-zanieczyszczenia-wod-lekami [accessed on 27/07/2023]
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2aaf4244-621f-400c-952f-3bdb12ccd036
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.