Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The homogeneity of an immiscible liquid–liquid system was investigated in a baffled vessel agitated by a Rushton turbine. The dispersion homogeneity was analyzed by comparing Sauter mean diameters and drop size distribution (DSD) determined in different measured regions for various impeller speeds. The sizes of droplets were obtained by the in-situ measurement technique and by the Image Analysis (IA) method. Dispersion kinetics was successfully fitted with Hong and Lee (1983) model. The effect of intermittency turbulence on drop size reported by Bałdyga and Podgórska (1998) was analyzed and the multifractal exponent 𝛼𝐹𝑇 was evaluated.
Czasopismo
Rocznik
Tom
Strony
209--–222
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
- Czech Technical University in Prague, Faculty of Mechanical Engineering, Department of Process Engineering, Technická 4, 160 00 Prague, Czech Republic
autor
- Czech Technical University in Prague, Faculty of Mechanical Engineering, Department of Process Engineering, Technická 4, 160 00 Prague, Czech Republic
Bibliografia
- 1. Bałdyga J., Bourne J.R., 1993. Drop breakup and intermittent turbulence. J. Chem. Eng. Japan, 26, 738–741. DOI: 10.1252/jcej.26.738.
- 2. Bałdyga J., Bourne J.R., 1995. Interpretation of turbulent mixing using fractals and multifractals. Chem. Eng. Sci., 50, 381–400. DOI: 10.1016/0009-2509(94)00217-F.
- 3. Bałdyga J., Podgórska W., 1998. Drop break-up in intermittent turbulence. Maximum stable drop size and transient sizes of drops. Can. J. Chem. Eng., 76, 456–470. DOI: 10.1002/cjce.5450760316.
- 4. Bucciarelli E., Formánek R., Kysela B., Fořt I., Šulc R., 2019. Dispersion kinetics in mechanically agitated vessel. EPJ Web Conf., 213, 02008. DOI: 10.1051/epjconf/201921302008.
- 5. Chen H.T., Middleman S., 1967. Drop size distribution in agitated liquid–liquid systems. AIChE J., 13, 989–995. DOI: 10.1002/aic.690130529.
- 6. Formánek R., Kysela B., Šulc R., 2019a. Drop size evolution kinetics in a liquid–liquid dispersions system in a vessel agitated by a Rushton turbine. Chem. Eng. Trans., 74, 1039–1044. DOI: 10.3303/CET1974174.
- 7. Formánek R., Kysela B., Šulc R., 2019b. Image analysis of particle size: effect of light source type. EPJ Web Conf., 213, 02021. DOI: 10.1051/epjconf/201921302021.
- 8. Formánek R., Šulc R., 2019c. Dispersion of immiscible liquid–liquid system in a vessel agitated by a Sawtooth impeller: Drop size time evolution. Proceedings of the International Conference Experimental Fluid Mechanics 2019. Franzensbad, Czech Republic, 19–22 November 2019, 136–139.
- 9. Formánek R., Šulc R., 2020. The liquid–liquid dispersion homogeneity in a vessel agitated by a high-shear sawtooth impeller. Processes, 8, 1012. DOI: 10.3390/pr8091012.
- 10. Hinze J.O., 1955. Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. AIChE J., 1, 289–295. DOI: 10.1002/aic.690010303.
- 11. Hong P.O., Lee J.M., 1983. Unsteady-state liquid–liquid dispersions in agitated vessels. Ind. Eng. Chem. Process Des. Dev., 22, 130–135. DOI: 10.1021/i200020a021.
- 12. Jasikova D., Kotek M., Kysela B., Sulc R., Kopecky V., 2018. Compiled visualization with IPI method for analysing of liquid–liquid mixing process. EPJ Web Conf., 180, 02039. DOI: 10.1051/epjconf/201818002039.
- 13. Khalil A., Puel F., Chevalier Y., Galvan J.-M., Rivoire A., Klein J.-P., 2010. Study of droplet size distribution during an emulsification process using in situ video probe coupled with an automatic image analysis. Chem. Eng. J., 165, 946–957. DOI: 10.1016/j.cej.2010.10.031.
- 14. Kolmogorov A.N., 1949. On the breakage of drops in a turbulent flow. Dokl. Akad. Nauk SSSR, 66, 825–828.
- 15. Kraume M., Gäbler A., Schulze K., 2004. Influence of physical properties on drop size distribution of stirred liquid–liquid dispersions. Chem. Eng. Technol., 27, 330–334. DOI: 10.1002/ceat.200402006.
- 16. Maaß S., Kraume M., 2012. Determination of breakage rates using single drop experiments. Chem. Eng. Sci., 70, 146–164. DOI: 10.1016/j.ces.2011.08.027.
- 17. Malík M., Primas J., Kotek M., Jašíková D., Kopecký V., 2019. Mixing of two immiscible phases measured by industrial electrical impedance tomography system. Mech. Ind., 20, 707. DOI: 10.1051/meca/2019081.
- 18. Maluta F., Montante G., Paglianti A., 2020. Analysis of immiscible liquid–liquid mixing in stirred tanks by Electrical Resistance Tomography. Chem. Eng. Sci., 227, 115898. DOI: 10.1016/j.ces.2020.115898.
- 19. Pacek A.W., Chamsart S, Nienow A.W., Bakker A., 1999. The influence of impeller type on mean drop size and drop size distribution in an agitated vessel. Chem. Eng. Sci., 54, 4211–4222. DOI: 10.1016/S0009-2509(99)00156-6.
- 20. Rodgers T.L., Cooke M., 2012. Correlation of drop size with sheat tip speed. 14𝑡 ℎ European Conference on Mixing. Warszawa, Poland, 10–13 September 2012, 407–412.
- 21. Šulc R., Ditl P., Fořt I., Jašíkova D., Kotek M., Kopecký V., Kysela B., 2017. Local velocity scaling in T400 vessel agitated by Rushton turbine in a fully turbulent region. EPJ Web Conf., 143, 02120. DOI: 10.1051/epj conf/201714302120.
- 22. Šulc R., Pešava V., Ditl P., 2015. Local turbulent energy dissipation rate in a vessel agitated by a Rushton turbine. Chem. Process Eng., 36, 135–149. DOI: 10.1515/cpe-2015-0011.
- 23. Zhou G, Kresta S.M., 1998. Evolution of drop size distribution in liquid–liquid dispersions for various impellers. Chem. Eng. Sci., 53, 2099–2113. DOI: 10.1016/S0009-2509(97)00437-5.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2aa9caed-ecac-45e9-a367-a492a672ae89