PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wyznaczanie parametrów zasięgowych kamer obserwacyjnych używanych w systemach ochrony osób i mienia

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Determination of range parameters of observation devices used in security systems
Języki publikacji
PL
Abstrakty
PL
Parametry systemów obserwacyjnych można określać na podstawie: symulacji komputerowych, badań terenowych lub pomiarów laboratoryjnych. W artykule przedstawiono sposób wyznaczania parametrów zasięgowych kamer termowizyjnych oraz VIS na podstawie pomiarów laboratoryjnych z wykorzystaniem kryterium Johnsona, a także modelu TTP. Artykuł zawiera opis metod wyznaczania parametrów zasięgowych oraz stanowiska pomiarowego. W artykule zaprezentowano przykładowe wyniki pomiarów parametrów, dwóch kamer termowizyjnych oraz dwóch kamer VIS, niezbędne do wyznaczenia parametrów zasięgowych.
EN
Range parameters of observation devices can be determined on the basis of numerical simulations or on the basis of measured characteristics. Those measurements can be conducted in both, laboratory and field conditions. It is, however, difficult to carry on reliable field measurements of range parameters because they are strongly depended on atmospheric conditions. Thus, the laboratory measurements are more favourable option. The paper describes the measurement stand, measurement methodology and the procedure for determination of range parameters. The results for thermal and VIS cameras are also presented, and they are analyzed and compared with the results obtained from current methods, including the measurement uncertainty figures. Some suggestions on the methodology of measurements are also given.
Rocznik
Strony
129--143
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
autor
  • Wojskowa Akademia Techniczna, Instytut Optoelektroniki, Zakład Techniki Termowizji i Podczerwieni, 00-908 Warszawa, ul. gen. S. Kaliskiego 2
autor
  • Wojskowa Akademia Techniczna, Instytut Optoelektroniki, Zakład Techniki Termowizji i Podczerwieni, 00-908 Warszawa, ul. gen. S. Kaliskiego 2
autor
  • Wojskowa Akademia Techniczna, Instytut Optoelektroniki, Zakład Techniki Termowizji i Podczerwieni, 00-908 Warszawa, ul. gen. S. Kaliskiego 2
Bibliografia
  • [1] J. Johnson, Analysis of imaging forming systems, Proceedings of the Image Intensifier Symposium, U.S. Army Engineer Research and Development Lab, Ford Belvoir, VA, 1958, 249-273.
  • [2] R.H. Vollmerhausen, D.A. Reago, Jr., R.G. Driggers, New Model for predicting Target Acquisition Performance, Infrared Imaging Systems: Analysis, Modeling and Testing XIV, G.C. Holst, Editor, Proceedings of SPIE, 5076, 2003.
  • [3] STANAG 4348, Definition of nominal static performance for image intensifier systems.
  • [4] STANAG 4351, Measurement of the minimum resolvable contrast (MRC) of image intensifier systems.
  • [5] STANAG 4349, Measurement of the minimum resolvable temperature difference (MRTD) of thermal cameras, 1995.
  • [6] STANAG 4347, Definition of nominal static ranger performance for thermal imaging systems, 1995.
  • [7] North Atlantic Treaty Organization, Experimental Assessment Parameters and Procedures for Characterization of Advanced Thermal Imagers, 2003.
  • [8] North Atlantic Treaty Organization, Flight Test Activities, RTO-AG-300-V26.
  • [9] R.H. Vollmerhausen, R.G. Driggers, M. Tomkinson, Improved image quality metric for predicting tactical vehicle identification, Proc. SPIE, 4030, 2000, 60-69.
  • [10] R.H. Vollmerhausen, E. Jacobs, The Targeting Task Performance (TTP) Metric. A New Model for predicting Target acquisition Performance, Technical report AMSEL-NV-TR-230, 2004.
  • [11] R.G. Driggers, R.H. Vollmerhausen, K.A. Krapels, Target identification performance as a function of low spatial frequency image content, Optical Engineering, 39 (09), 2000.
  • [12] R.H. Vollmerhausen, D.A. Reago, Jr., R.G. Driggers, Analysis and Evaluation of Sampled Imaging Systems, SPIE Press, Bellingham, WA, 2010.
  • [13] R.H. Vollmerhausen, R.G. Driggers, Analysis of Sampled Imaging Systems, SPIE Press, Bellingham, WA, 2000.
  • [14] K. Krapels, R.G. Driggers, D. Deaver, S.K. Moyer, J. Palmer, Midwave infrared and visible sensor performance modelling: small craft identification discrimination criteria for maritime security, Applied Optics, 46, 30, 2007.
  • [15] K. Krapels, R.G. Driggers, P. Larson, J. Garcia, B. Walden, Small craft ID Criteria (N50/V50) for Short Wave Infrared Sensor in Maritime Security, Infrared Imaging Systems: Design, Analysis, Modeling and Testing XIX, G.C. Holst, Editor, Proc. of SPIE, 6941, 2008.
  • [16] K. Krapels, R.G. Driggers, D. Deaver, Small Craft Identification Discrimination Criteria for maritime Anti-terrorism and Force Protection, Report North Atlantic Treaty Organization 01.08.2006.
  • [17] R.G. Driggers, J.S. Taylor, Jr., K. Krapels, Probability of identification cycle criterion (N50/N90) for underwater mine target acquisition, Optical Engineering, 46 (3), 2007.
  • [18] S.K. Moyer, J.E. Flug, T.C. Edwards, K.A. Krapels, J. Scarbrough, Identification of handheld objects for electro-optic/FLIR applications, Infrared Imaging Systems: Design, Analysis, Modeling and Testing XV, G.C. Holst, Editor, Proc. of SPIE, 5407, 2004.
  • [19] S.K. Moyer, J.G. Hixson, Probability of identification of small hand-held objects for electro-optic forward-looking infrared systems, Optical Engineering, 45 (6), 2006.
  • [20] R.H. Vollmerhausen, R.G. Driggers, Analysis of Sampled Imaging Systems, SPIE Press, Bellingham, WA, 2000.
  • [21] R.H. Vollmerhausen, D.A. Reago, Jr., R.G. Driggers, Analysis and Evaluation of Sampled Imaging Systems, SPIE Press, Bellingham, WA, 2010.
  • [22] D.E. Schmieder, M. R. Weathersby, Detection Performance in Clutter with Variable Resolution, IEEE Transactions on Aerospace and Electronic Systems, AES-19(4), 1983.
  • [23] B.P. Teaney, J.P. Reynolds, J. O’Conner, Guidance on methods and parameters for Army target acquisition models, Design, Analysis, Modeling and Testing XV, G.C. Holst Editor, Proc. of SPIE, 6543, 2007.
  • [24] B.P. Teaney, Weighted contrast metric for imaging system performance, Infrared Imaging Systems, Design, Analysis, Modeling and Testing XV, G.C. Holst, K.A. Krapels Editor, Proc. of SPIE, 8355, 2012.
  • [25] J.D. Howe, The Infrared and Electro-Optical System Handbook, Environmental Research Institute of Michigan and The Society of Photo-Optical Instrumentation Engineers, 4, 1993, 61.
  • [26] R.G. Driggers, S.J. Pruchnik, Jr., Laboratory measurement of sampled infrared imaging system performance, Optical Engineering, 38 (5), 1999, 853-861.
  • [27] G.C. Holst, Testing and Evaluation of infrared Imaging Systems, JCD Publishing Company, 1998.
  • [28] K. Chrzanowski, J. Barela, K. Firmanty, Testing of electro-optical imaging systems,Design, Analysis, Modeling and Testing XV, G.C. Holst Editor, Proc. of SPIE, 5407 2004.
  • [29] J. Barela, M. Kastek, K. Firmanty, P. Trzaskawka, R. Dulski, Determining detection, recognition and identification ranges of thermal cameras on the basic of laboratory measurements and TTP model, Proc. SPIE, 8355, 2012.
  • [30] www.ci-system.com.
  • [31] www.sbir.com.
  • [32] www.hgh.fr.
  • [33] Modular Electro-optical Test System (METS-L), Operation Manual, 2007.
  • [34] Night Vision Thermal and Image Processing Performance Model, User’s Manual, 2009.
  • [35] www.mathworks.com.
  • [36] S.W. Smith, Digital Signal Processing. A Practical Guide for Engineers and Scientists by Steven, BTC Publishing Company, 2003.
  • [37] R.G. Lyons, Understanding Digital Signal Processing, WKL Publishing Company, 2006.
  • [38] P.A. Jansson, Deconvolution of spectra and images, Academic Press Inc., New York, 1997.
  • [39] J.D. Ratches, Static Performance Model for Thermal Imaging Systems, Optical Engineering, 15(6), 1976.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2aa25b52-9ed7-4509-9af5-33e970bcb946
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.