PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Adsorption and electrokinetic studies of sodalite/lithium/poly(acrylic acid) aqueous system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The synthetic zeolite-sodalite obtained by the hydrothermal conversion of fly ash with aqueous sodium hydroxide was used in the experiments. Its adsorption properties in relation to lithium ions were examined. The effects of: solution pH, presence of polymeric substance – poly(acrylic acid) and order of individual adsorbates addition were determined. To specify the binding mechanism of lithium ions on the sodalite surface, besides adsorption experiments, the measurements leading to the solid surface charge density and zeta potential determination, were performed. As a result, the structure of mixed adsorption layer composed of polymer+metal complexes was characterized. The presented study concerns two important issues: management of environmentally harmful wastes such as coal combustion products as well as searching for new sources of lithium and effective methods of its acquisition.
Rocznik
Strony
158--166
Opis fizyczny
Bibliogr. 22 poz., rys., wykr., wz.
Twórcy
  • Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Maria Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland
  • Department of Geotechnics, Civil Engineering and Architecture Faculty, Lublin University of Technology, Nadbystrzycka Street 40, 20-618 Lublin, Poland
  • Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Maria Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland
  • Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Maria Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland
  • Department of Inorganic Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Maria Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland
  • Department of Analytical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Maria Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland
  • Laboratory of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
Bibliografia
  • CHIBOWSKI, S., WIŚNIEWSKA, M., MARCZEWSKI, A.W., PIKUS, S., 2003. Application of the SAXS and viscometry for determination of the thickness of adsorbed polymer layers at the ZrO2-polymer solution interface. J. Colloid Interf. Sci. 267, 1-8.
  • CRUMMET, W.B., HUMMEL, R.A., 1963. The determination of traces of polyacrylamides in water. J Am Water Works Assoc. 55, 209-219.
  • EL-SONBATI, A.Z., DIAB, M.A., EL-BINDARY, A.A., 2012. Stoichiometry of Polymer Complexes, Stoichiometry and Research – The Importance of Quantity in Biomedicine, InTech, Croatia.
  • FLANIGEN, E.M., 2001. Zeolites and molecular sieves. An historical perspective, Introduction to Zeolite Science and Practice, 137.
  • FRANUS, W., WDOWIN, M., 2010. Removal of ammonium ions by selected natural and synthetic zeolites. Min. Res. Manag. 26, 133-148.
  • FRANUS, W., WDOWIN, M., FRANUS, M., 2014. Synthesis and characterization of zeolites prepared from industrial fly ash. Environ. Monit. Assess. 186, 5721-5729.
  • HUNTER, R.J., 1988. Zeta potential in colloid science: principles and applications. Academic Press, London.
  • JANUSZ, W., 1994. Electrical double layer at the metal oxide/electrolyte interface. In (Marcel Decker Ed): Interfacial forces and fields: theory and applications, Surfactant Sci, vol. 85, New York, chapter 4.
  • LANGUANG, L., XUEBING, H., JIANQIU, L., JIANFENG, H., MINGGAO, O., 2013. A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sourc. 226, 272-288.
  • M’PANDOU, A., SIFFERT, B., 1987. Polyethylene glycol adsorption at the TiO2-H2O interface: distortion of ionic structure and shear plane position. Colloids Surf A. 4, 159-172.
  • MAESEN, T.M., MARCUS, B., 2001. The zeolite scene, Introduction to Zeolite Science and Practice, 137.
  • MCCUSKER, L.B., BAERLOCHER, C., 2001. Zeolites structures, Introduction to Zeolite Science and Practice, 137.
  • SIEKIERKA, A., TOMASZEWSKA, B., BRYJAK M., 2018. Lithium capturing from geothermal water by hybrid capacitive deionization. Desalination. 436, 8-14.
  • SUZUKI, T., TACHIBANA, Y., MATSUMOTO, K., PUTRA, A.R., AIKAWA, F., SANDUINJUD, U., TANAKA, M., 2017. Lithium isotope separation using cation exchange resin with high cross-linkage. Energy Procedia. 131, 146-150.
  • SWAIN, B., 2017. Recovery and recycling of lithium: A review. Sep Pur. Tech. 172, 388-403.
  • TOMASZEWSKA, B., RAJCA, M., KMIECIK, E., BODZEK, M., BUJAKOWSKI, W., TYSZER, M., WĄTOR, K., 2017. Process of geothermal water treatment by reverse osmosis. The research with antiscalants. Des. Water Treat. 73, 1-10.
  • WDOWIN, M., FRANUS, M., PANEK, R., BANDURA, L., FRANUS, W., 2014. The conversion technology of fly ash into zeolites. Clean Tech. Env. Policy. 16, 1217-1223.
  • WIŚNIEWSKA, M., CHIBOWSKI, S., URBAN, T., 2015. Modification of the alumina surface properties by adsorbed anionic polyacrylamide - Impact of polymer hydrolysis. J. Ind. Eng. Chem. 21, 925-931.
  • WIŚNIEWSKA, M., CHIBOWSKI, S., URBAN, T., 2016. Adsorption properties of the nanozirconia/anionic polyacrylamide system -effects of surfactant presence, solution pH and polymer carboxyl groups content. Appl. Surf. Sci. 370, 351-356.
  • WIŚNIEWSKA, M., FIJAŁKOWSKA, G., OSTOLSKA, I., FRANUS, W., NOSAL-WIERCIŃSKA, A., TOMASZEWSKA, B., GOSCIANSKA, J., WÓJCIK, G., 2018. Investigations of the possibility of lithium acquisition from geothermal water using natural and synthetic zeolites applying poly(acrylic acid). J. Cleaner Prod. 195, 821-830.
  • WIŚNIEWSKA, M., NOWICKI, P., 2019. Simultaneous removal of lead(II) ions and poly(acrylic acid) macromolecules from liquid phase using of biocarbons obtained from corncob and peanut shell precursors. J. Molec. Liq. 296, 111806.
  • WIŚNIEWSKA, M., NOWICKI, P., 2020. Peat-based activated carbons as adsorbents for simultaneous separation of organic molecules from mixed solution of poly(acrylic acid) polymer and sodium dodecyl sulfate surfactant. Colloids Surf. A. 585, 124179.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2a9f9e8a-c86a-40d7-8c08-da64ab939e28
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.