PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On-line process identification using the Modulating Functions Method and non-asymptotic state estimation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents an iterative identification method dedicated for industrial processes. The method consists of two steps. In the first step, a MISO system is identified with the Modulating Functions Method to obtain sub-models with a common denominator. In the second step, the obtained subsystems are re-identified. This procedure enables to obtain the set of models with different denominators of the transfer functions. The algorithm was used for on-line identification of a glass conditioning process. Identification window is divided into intervals, in which the models can be updated based on recent process data, with the use of the integral state observer. Results of the performed simulations for the identified models are compared with the historical process data.
Rocznik
Strony
535--555
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wzory
Twórcy
  • Department of Automatic Control and Robotics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
  • Department of Automatic Control and Robotics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • [1] D. Argenas and A. Kroll: A data selection method for large databases based on recursive instrumental variables for system identification of MISO models. 2019 18th European Control Conference (ECC), Napoli, Italy, 2019, 357-362. DOI: 10.23919/ECC.2019.8796086.
  • [2] S.M. Asiri and T. Laleg-Kirati: Modulating functions-based method for parameters and source estimation in one-dimensional partial differential equations. Inverse Problems in Science and Engineering, 25(8), (2017), 1191-1215.
  • [3] J. Byrski and W. Byrski: A double window state observer for detection and isolation of abrupt changes in parameters. International Journal of Applied Mathematics and Computer Science, 26(3), (2016), 585-602. DOI: 10.1515/amcs-2016-0041.
  • [4] W. Byrski and J. Byrski: The role of parameter constraints in EE and OE methods for optimal identification of continuous LTI models. International Journal of Applied Mathematics and Computer Science, 22(2), (2012), 379-388. DOI: 10.2478/v10006-012-0028-3.
  • [5] W. Byrski, M. Drapała, and J. Byrski: An adaptive identification method based on the modulating functions technique and exact state observers for modeling and simulation of a nonlinear MISO glass melting process. International Journal of Applied Mathematics and Computer Science, 29(4), (2019), 739-757. DOI: 10.2478/amcs-2019-0055.
  • [6] H. Garnier, M. Gilson, P. Young, and E. Huselstein: An optimal IV technique for identifying continuous-time transfer function model of multiple input systems. Control Engineering Practice, 15(4), (2007), 471-486. DOI: 10.1016/j.conengprac.2006.09.004.
  • [7] B.P. Gough, P. Eng, and D. Matovich: Predictive-adaptive temperature control of molten glass. IEEE Industry Applications Society Dynamic Modeling Control Applications for Industry Workshop, (1997), 51-55. DOI: 10.1109/DMCA.1997.603511.
  • [8] T. Janiczek: Generalization of the modulating functions method into the fractional differential equations. Bulletin of the Polish Academy of Sciences Technical Sciences, 58(4), (2010), 593-599. DOI: 10.2478/v10175-010-0060-0.
  • [9] K.B. Janiszowski: Identification of coefficients of a low order continuous time transfer function from discrete-time recorded measurements. Archives of Control Sciences, 10(12), (2000), 31-46.
  • [10] J. Kasprzyk and J. Figwer: MULTI-EDIP - an intelligent software package for computer-aided multivariate signal and system identification. Archives of Control Sciences, 23(4), (2013), 427-446.
  • [11] A. Kharitonov, S. Henkel, and O. Savodny: Two degree of freedom control for a glass feeder. Proceedings of the European Control Conference, Kos, Greece, (2007), 4079-4086. DOI: 10.23919/ECC.2007.7068450.
  • [12] R. Khoury and D. Harder: Numerical Methods and Modelling for Engineering. Springer International Publishing AG, 2016.
  • [13] F. Malchow and O. Sawodny: Model based feedforward control of an industrial glass feeder. Control Engineering Practice, 20(1), (2012), 62-68. DOI: 10.1016/j.conengprac.2011.09.004.
  • [14] R. Ouvrard and T. Poinot: Identification of a MIMO continuous-time transfer function model with different denominators. 16th IFAC Symposium on System Identification, IFAC Proceedings Volumes, 45(16), (2012), 137-142. DOI: 10.3182/20120711-3-BE-2027.00047.
  • [15] H. Preisig and D. Rippin: Theory and application of the modulating function method - I. Review and theory of the method and theory of the spline-type modulating functions. Computers & Chemical Engineering, 17(1), (1993), 1-16. DOI: 10.1016/0098-1354(93)80001-4.
  • [16] M. Quaglio, C. Waldron, A. Pankajakshan, E. Cao, A. Gavriilidis, E.S. Fraga, and F. Galvanin: An online reparametrisation approach for robust parameter estimation in automated model identification platforms. Computers and Chemical Engineering, 124 (2019), 270-284. DOI: 10.1016/j.compchemeng.2019.01.010.
  • [17] G.P. Rao: Decomposition, decentralization and coordination of identification algorithms for large scale systems. IFAC Proceedings Volumes, 18(5), (1985), 297-301. DOI: 10.1016/S1474-6670(17)60575-5.
  • [18] R. Rivas-Perez, J. Sotomayor-Moriano, G. Pérez-Zuñiga and M.E. So-to-Angles: Real-time implementation of an expert model predictive controller in a pilot-scale reverse osmosis plant for brackish and seawater desalination. Applied Sciences, 9(14), (2019), 2932. DOI: 10.3390/app9142932.
  • [19] M. Shinbrot: On the analysis of linear and nonlinear systems. Transactions of the American Society of Mechanical Engineers, Journal of Basic engineering, 79(3), (1957), 547-552. DOI: 10.1115/1.4013092.
  • [20] X. Yang, X. Liou, and S. Yin: Robust identification of nonlinear systems with missing observations: The case of state-space model structure. IEEE Transactions on Industrial Informatics, 15(5), (2019), 2763-2774. DOI: 10.1109/tii.2018.2871194.
  • [21] X. Yang and X. Yang: Local identification of LPV dual-rate system with random measurement delays. IEEE Transactions on Industrial Electronics, 65(2), (2018), 1499-1507. DOI: 10.1109/TIE.2017.2733465.
  • [22] J. You, Y. Liu, J. Chen, and F. Ding: Iterative identification for multiple-input systems with time-delays based on greedy pursuit and auxiliary model. Journal of the Franklin Institute, 356(11), (2019), 5819-5833. DOI: 10.1016/j.jfranklin.2019.03.018.
  • [23] P. Zhou, S. Zhang, and P. Dai: Recursive learning-based bilinear subspace identification for online modeling and predictive control of a complicated industrial process. IEEE Access, 8 (2020), 62531-62541. DOI: 10.1109/AC-CESS.2020.2984319.
Uwagi
1. This work was supported by the scientific research funds from the Polish Ministry of Education and Science and AGH UST Agreement no 16.16.120.773 and was also conducted within the research of EC Grant H2020-MSCARISE-2018/824046.
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2a9ee3c8-d347-44de-9103-c9ad2adb47a7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.