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Abstract. The restriction of the input set in the form 

of a positive cone of the space <L, R> is not always correct. 

For instance, while studying the organ of vision, people are 

limited not only to positive, but also to radiation with not 

very high energies, because excessively intense can disturb 

the visual organ. In this particular case, a convex body of a 

linear space is a fairly acceptable model of the set of input 

signals. Therefore, we consider linear predicates with this 

domain of definition. 
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INTRODUCTION 

The input signals set of the object represents some 

algebraic structure in many practical occasions. It is 

explained by the fact that usually there are certain 

connections between the elements of this set, which can be 

interpreted as algebraic operations. The correct recognition 

of the corresponding structure largely determines the 

adequacy of the mathematical model as a whole. In scope of 

comparator identification, this recognition must be done in 

the language of experimentally verifiable properties of 

relations or predicates. Without dwelling on the 

experimental part, which goes beyond the scope of this 

paper, we give a theoretical solution of this problem for an 

algebraic structure such as a linear space over a certain field. 

This structure is widespread in practice. The domain of 

definition of operators, which will be studied in the future, is 

a linear space in this paper. The basics of the given topic are 

described in [1] and [2-6]. 

PREDICATE DATA MODEL 

We will assume that the input signal processing 

system realizes by its behavior four predicates defined on the 

corresponding Cartesian power of the set 𝑀 (input signals): 

one one-placed predicate 𝑃(𝑥), one two-placed predicate 

𝐸(𝑥, 𝑦) and two three-placed predicates 𝑆(𝑥, 𝑦, 𝑧), 𝑇(𝑥, 𝑦, 𝑧). 
Characters 𝑥, 𝑦, 𝑧 indicate the input signals of the system. 

The output signals of the system are elements 0 and 1, which 

are the values of the listed predicates. 

The predicate 𝑃(𝑥) forms classes of prototypes of 

coefficients that can be adopted as the coefficients 

themselves. The predicate 𝐸(𝑥, 𝑦) is an equivalence 

predicate given on 𝑀 ×𝑀. It forms classes of prototypes of 

vectors that can be taken as vectors themselves. The 

predicate 𝑆(𝑥, 𝑦, 𝑧) is given on 𝑃3, it determines the 

coefficients addition operation. The predicate 𝑇(𝑥, 𝑦, 𝑧) is 

given on 𝑃 ×𝑀 ×𝑀, it determines the operation of 

multiplication of the coefficients by vector. Consider the set 

𝑀 on which the relations 𝐸(𝑥, 𝑦), 𝑆(𝑥, 𝑦, 𝑧), 𝑃(𝑥), 𝑇(𝑥, 𝑦, 𝑧), 
satisfying the following conditions are given: 

1) 𝐸(𝑥, 𝑥) = 1; 

2) 𝐸(𝑥, 𝑦) = 1 ⇒ 𝐸(𝑦, 𝑥) = 1; 

3) 𝐸(𝑥, 𝑦) = 1, 𝐸(𝑦, 𝑧) = 1 ⇒ 𝐸(𝑥, 𝑧) = 1; 

4) ∀𝑥, 𝑦∃ 𝑧 : 𝑆 (𝑥, 𝑦, 𝑧) = 1; 

5) 𝑆(𝑥, 𝑦, 𝑧) = 1, 𝑆(𝑥, 𝑦, 𝑧 ′) = 1 ⇒ 𝐸(𝑧, 𝑧 ′) = 1; 

6) 𝑆(𝑥, 𝑦, 𝑧) = 1, 𝑆(𝑥 ′, 𝑦, 𝑧) = 1 ⇒ 𝐸(𝑥, 𝑥 ′) = 1; 

7) 𝑆(𝑥, 𝑦, 𝑧) = 1, 𝑆(𝑥, 𝑦′, 𝑧) = 1 ⇒ 𝐸(𝑦, 𝑦′) = 1; 

8) 𝑆(𝑥, 𝑦, 𝑧) = 1 ⇒ 𝑆(𝑦, 𝑥, 𝑧) = 1; 

9) 𝑆(𝑥, 𝑦, 𝑧) = 1, 𝐸(𝑧, 𝑧 ′) = 1 ⇒ 𝑆(𝑥, 𝑦, 𝑧 ′) = 1; 

10) 𝑆(𝑥, 𝑦, 𝑧) = 1, 𝐸(𝑦, 𝑦′) = 1 ⇒ 𝑆(𝑥, 𝑦′, 𝑧) = 1; 

11) 𝑆(𝑥, 𝑦, 𝑧) = 1, 𝐸(𝑥, 𝑥 ′) = 1 ⇒ 𝑆(𝑥 ′, 𝑦, 𝑧) = 1; 

12) 𝑆(𝑥, 𝑦, 𝑧) = 1, 𝑆(𝑧, 𝑡, 𝑟) = 1, 𝑆(𝑦, 𝑡, 𝑝) = 1 ⇒
𝑆(𝑥, 𝑝, 𝑟) = 1; 

13) ∃0 : 𝑆 (𝑥, 𝑦, 𝑥) = 1 ⇒ 𝐸(𝑦, 𝑜) = 1; 
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14) ∀𝑥∃(−𝑥) : 𝑆 (𝑥, −𝑥, 𝑦) = 1 ⇒ 𝐸(𝑦, 0) = 1; 

15) 𝑃(0) = 1; 

16) 𝑃(𝑥) = 1, 𝑃(𝑦) = 1, 𝑆(𝑥, 𝑦, 𝑧) = 1 ⇒ 𝑃(𝑧) = 1; 

17) 𝑃(𝑥) = 1, 𝐸(𝑥, 𝑦) = 1 ⇒ 𝑃(𝑦) = 1; 

18) ∀𝑥, 𝑦∃ 𝑧 : 𝑃 (𝑥) = 1 ⇒ 𝑇(𝑥, 𝑦, 𝑧) = 1; 

19) 𝑃(𝑥) = 0, 𝑃(𝑦) = 0 ⇒ 𝑇(𝑥, 𝑦, 𝑧) = 0; 

20) 𝑃(𝑥) = 1, 𝑃(𝑦) = 1, 𝑇(𝑥, 𝑦, 𝑧) = 1 ⇒ 𝑃(𝑧) = 1; 

21) 𝑇(𝑥, 𝑦, 𝑧) = 1 ⇒ 𝑇(𝑥, 𝑦, 𝑧) = 1; 

22) 𝑇(𝑥, 𝑦, 𝑧) = 1, 𝑇(𝑥, 𝑦, 𝑧 ′) = 1 ⇒ 𝐸(𝑧, 𝑧 ′) = 1; 

23) 𝑇(𝑥, 𝑦, 𝑧) = 1, 𝑇(𝑥, 𝑦′, 𝑧) = 1 ⇒ 𝐸(𝑦, 𝑦′) = 1; 

24) 𝑇(𝑥, 𝑦, 𝑧) = 1, 𝑇(𝑥 ′, 𝑦, 𝑧) = 1 ⇒ 𝐸(𝑥, 𝑥 ′) = 1; 

25) 𝑇(𝑥, 𝑦, 𝑧) = 1, 𝑇(𝑧, 𝑧 ′) = 1 ⇒ 𝑇(𝑥, 𝑦, 𝑧 ′) = 1; 

26) 𝑇(𝑥, 𝑦, 𝑧) = 1, 𝑇(𝑦, 𝑦′) = 1 ⇒ 𝑇(𝑥, 𝑦 ′, 𝑧) = 1; 

27) 𝑇(𝑥, 𝑦, 𝑧) = 1, 𝑇(𝑥, 𝑥 ′) = 1 ⇒ 𝑇(𝑥 ′, 𝑦, 𝑧) = 1; 

28) 𝑇(𝑥, 𝑦, 𝑧) = 1, 𝑃(𝑥) = 1, 𝐸(𝑧, 0) = 1 ⇒ 𝐸(𝑥, 0) = 1; 

29) 𝐸(𝑧, 0) = 1, 𝑇(𝑥, 𝑦, 𝑧) = 1 ⇒ 𝐸(𝑧, 0) = 1; 

30) 𝑇(𝑥, 𝑦, 𝑧) = 1, 𝑃(𝑥) = 1, 𝑃(𝑦) = 1, 𝑇(𝑧, 𝑝, 𝑟) =
1, 𝑇(𝑦, 𝑝, 𝑡) = 1 ⇒ 𝑇(𝑥, 𝑡, 𝑟) = 1; 

31) 𝑇(𝑥, 𝑦, 𝑧) = 1, 𝑇(𝑥 ′, 𝑦, 𝑧 ′) = 1, 𝑆(𝑥, 𝑥 ′, 𝑡) = 1, 𝑃(𝑥) =
𝑃(𝑥 ′) = 1, 𝑆(𝑧, 𝑧 ′, 𝑝) = 1 ⇒ 𝑇(𝑡, 𝑦, 𝑝) = 1; 

32) 𝑃(𝑥) = 1, 𝑇(𝑥, 𝑦, 𝑧) = 1, 𝑇(𝑥, 𝑦′, 𝑧′) = 1, 𝑆(𝑧, 𝑧′, 𝑡) =
1, 

𝑆(𝑦, 𝑦′, 𝑝) = 1 ⇒ 𝑇(𝑥, 𝑝, 𝑡) = 1 ; ∃1 : 𝑃 (1)
= 1, 𝑇(𝑦, 𝑥, 𝑥) = 1 ⇒ 𝐸(1, 𝑦) = 1; 

33) 𝑃(𝑥) = 1 ∃𝑥−1 : 𝑇 (𝑥, 𝑥−1, 𝑦) = 1 ⇒ 𝐸(1, 𝑦) = 1; 

34) ∃ {𝑡𝑖}𝑖−1
𝑛 : ∀ 𝑥 ∃{𝑦𝑖(𝑥)}𝑖=1

𝑛 : 

a. 𝑃(𝑦𝑖(𝑥)) = 1; 

b. 𝑇(𝑦𝑖(𝑥), 𝑡𝑖 , 𝑧𝑖) = 1, 𝑆(𝑧1, 𝑧2, 𝑟1) =
1, 𝑆(𝑧1, 𝑧3, 𝑟2) = 1, . . . , 𝑆(𝑧𝑛−2, 𝑧𝑛 , 𝑟𝑛−1) = 1 

⇒ 𝐸(𝑥, 𝑟𝑛−1) = 1; 

c. ∀{ℎ𝑖 , (𝑥)}𝑖=1
𝑛 , satisfying a and b ⇒ 𝐸(ℎ𝑖, 𝑦𝑖(𝑥)) =

1. 

35) 𝑃(𝑥) = 1, 𝑃(𝑧) = 1, 𝑆(𝑥, 𝑦, 𝑧) = 1 ⇒ 𝑃(𝑦) = 1. 

In this case the set 𝑀 is divided into equivalence 

classes by the relation 𝐸(𝑥, 𝑦). The equivalence classes will 

be denoted by A, B, C, R, 𝑇,  . . ., and all the set of classes will 

be denoted by 𝑁. Then, as it is shown in the work, 𝐸(𝑥, 𝑦) 
can be represented as 

𝐸(𝑥, 𝑦) = 𝐷(𝐹𝑥, 𝐹𝑦), where 𝐷 is an equality 

predicate given on 𝑁 × 𝑁, and 𝐹 :𝑀 → 𝑁 (and 𝐹𝑥 = 𝐹𝑦 ⇔
𝐸(𝑥, 𝑦) = 1). 

Our aim is to show that the given relations induce the 

structure of 𝑛 -dimensional linear space on equivalence 

classes. 

Statement 1. If we introduce an operation (addition) 

on the equivalence classes by the rule 𝐴  +  𝐵  =  𝐶 if and 

only if ∀𝑥, 𝑦, 𝑧: 

𝑥 ∈ 𝐴,  𝑦 ∈ 𝐵,  𝑧 ∈ 𝐶,  𝑆(𝑥, 𝑦, 𝑧) = 1, then the 

definition is correct and with respect to the operation 𝑁 

forms an abelian group. 

Proof. First we show the correctness of the definition. 

We arbitrarily select two equivalence classes A,B ∈ 𝑁 and 

two representatives of each class 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵. Then the 

property 4 implicates that there is 𝑧 ∈ 𝐶, for which 

𝑆(𝑥, 𝑦, 𝑧) = 1. It means that 𝐴 + 𝐵 = 𝐶. Thus, the operation 

is defined on any pair A,B ∈ 𝑁, moreover, uniquely. Let 𝐶 ′ ≠
𝐶, and 𝐴 + 𝐵 = 𝐶,  𝐴 + 𝐵 = 𝐶 ′. 

Then for an arbitrary 𝑧′ ∈ 𝐶′ we have 𝑆(𝑥, 𝑦, 𝑧′) = 1. 
Considering that 𝑆(𝑥, 𝑦, 𝑧) = 1, from property 5 we get 

𝐸(𝑧, 𝑧′) = 1 or 𝑧′ ∈ 𝐶. Hence,   𝐶 ∩ 𝐶′ ≠ ∅ and since 

different classes have an empty intersection, then 𝐶 ∈ 𝐶′. 
There is a contradiction. Now we show that the class 𝑍 does 

not depend on the choice of 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵. Let 𝑥, 𝑥′ ∈ 𝐴 

and 𝑦, 𝑦′ ∈ 𝐵. Then since 𝑆(𝑥, 𝑦, 𝑧) = 1 and 𝐸(𝑥′, 𝑥) = 1, 
then on the basis of property 11 we get 𝑆(𝑥′, 𝑦, 𝑧) = 1. 
Further, taking into account property 10 and the equation 

𝐸(𝑦′, 𝑦) = 1, we get that 𝑆(𝑥′, 𝑦′, 𝑧) = 1, but this also 

means that the addition operation does not depend on the 

choice of the elements in the classes 𝐴 and 𝐵. Hence, the 

operation we introduced is correct. 

We show that with respect to this operation 𝑁 forms 

an Abelian group. 

Let 𝐴 + 𝐵 = 𝐶. Then for any 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵, 𝑧 ∈ 𝐶, 

𝑆(𝑥, 𝑦, 𝑧) = 1. In this case, property 8 implies 𝑆(𝑥, 𝑦, 𝑧) = 1 

or 𝐴 + 𝐵 = 𝐶. Thus, 𝐴 + 𝐵 = 𝐵 + 𝐴, the operation is 

commutative. 

It is also associative. Let (𝐴 + 𝐵) + 𝐶 = 𝑅,  𝐴 + 𝐵 =
𝑇,  𝐵 + 𝐶 = 𝐺. Then for the representatives of classes the 

equalities 𝑆(𝑥, 𝑦, 𝑡) = 1, 𝑆(𝑦, 𝑧, 𝑔) = 1, 𝑆(𝑡, 𝑧, 𝑟) = 1. 
Taking into account property 12, we obtain 𝑆(𝑥, 𝑔, 𝑟) = 1. It 
means 𝐴 + 𝐺 = 𝑅 or 𝐴 + (𝐵 + 𝐶) = 𝑅, i.e. 

(𝐴 + 𝐵) + 𝐶 = 𝐴 + (𝐵 + 𝐶), then the operation is 

associative. Consider property 13. It states that there is 𝑂 ∈
𝑀 such that for any 𝑥 𝑆(𝑥, 𝑂, 𝑥) = 1. Hence, 𝐴 + 𝑂 = 𝐴 (𝑂 

is an equivalence class, which 𝑂 belongs to). Moreover, 𝑂 is 

unique, because if there is 𝑂′ ≠ 𝑂, then for 𝑦 ∈ 𝑂′ we get 

𝑆(𝑥, 𝑦, 𝑧) = 1 and the second part of the property 13 implies 

𝐸(𝑦, 𝑂) = 1, i.e. 𝑂′ = 𝑂. Thus, among 𝑁 there is only one 

element  𝑂, which performs the role of zero relative to this 

operation. 

Finally, let us dwell on the existence of the inverse 

element. We choose an arbitrary class 𝐴 and its 

representative 𝑥 ∈ 𝐴. Then by property 14 we have: there is 

−𝑥, for which 𝑆(𝑥, −𝑥, 𝑦) = 1 implies 𝐸(𝑦, 0) = 1. Let 

−𝑥 ∈ −𝐴, then 𝐴 + (−𝐴) = 𝐵, where 𝑦 ∈ 𝐵, but with 

𝐸(𝑦, 0) = 1 we get 𝑦 ∈ 0 or 𝐵 = 0.  
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Thus, 𝐴 + (−𝐴) = 0, and −𝐴 is unique. Since if the 

equation is correct for some other class 𝐶, then 𝑆(𝑥, 𝑧, 0) =
1, 𝑆(𝑥, −𝑥, 𝑦) = 1 and 𝐸(𝑦, 0) = 1. Then from property 9 

we get 𝑆(𝑥, −𝑥, 0) = 1, and from property 6 we get 

−𝐸(−𝑥, 𝑧) = 1, i.e. −𝑥 ∈ 𝐶 or −𝐴 = 𝐶.  

The statement has been proven. 

Statement 2. The relation 𝑃(𝑥), given on 𝑀, 
determines its subset 𝑀′, which is the union of equivalence 

classes, and the set of classes included in 𝑀′ form a subgroup 

of the group of all classes with respect to the addition 

operation. 

Proof. To prove the first part of the assertion of the 

lemma, it is necessary to show that for any equivalence class 

𝑆 the following is correct: 𝐴 ∩𝑀′ is either an empty set or 

𝐴. Let 𝑥 ∈ 𝐴, then if 𝑃(𝑥) = 1 and 𝐸(𝑥, 𝑦) = 1, then 

property 17 implies 𝑃(𝑦) = 1, i.e. 𝐴 ⊂ 𝑀′. If 𝑃(𝑥) = 0, then 

for any 𝑦 ∈ 𝐴 : 𝑃 (𝑦) = 0, since otherwise if 𝑃(𝑦) =
1, 𝐸(𝑥, 𝑦) = 1, then from the property 17 we obtain 𝑃(𝑥) =
1. It is a contradiction. Hence, if 𝑃(𝑥) = 0, then 𝐴 ∩ 𝑀′ =
∅. Thus, 𝑀 ` = {𝑥 : 𝑃 (𝑥) = 1} is a union of equivalence 

classes. We denote the set of these classes by 𝑁′. Let us 

prove that 𝑁′ ⊂ 𝑁 is a subgroup with respect to the addition 

of classes. Let 𝐴, 𝐵 ∈ 𝑁′ and 𝐴 + 𝐵 = C, 𝑃(𝑥) = 1, 𝑃(𝑦) =
1 and 𝑆(𝑥, 𝑦, 𝑧) = 1. Property 16 asserts that 𝑃(𝑧) = 1, 
consequently, 𝑧 ∈ 𝑁′. Hence the operation of addition does 

not lead beyond 𝑁′. Property 15, which states that 𝑃(0) = 1, 
means that 0 ∈ 𝑁′. Now, let us show that the inverse element 

belongs to 𝑁′. For this we consider 𝐴 ∈ 𝑁′ and −𝐴. Let −𝐴 

does not belong to 𝑁 `.  Then 𝑃(−𝑥) = 0, 𝑃(𝑥) =
1, 𝑃(0) = 1 and 𝑆(𝑥, −𝑥, 0) = 1. But the last set of 

equalities contradicts property 36. The assertion is proved. 

Statement 3. If on equivalence classes belonging to 

𝑁′, we introduce the operation (multiplication) by the rule: 

AB = 𝐶, if and only if 𝑇(𝑥, 𝑦, 𝑧) = 1, for ∀𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵, 𝑧 ∈
𝐶, then this definition will be correct, and with respect to 

these operations of addition and multiplication, the 

equivalence classes 𝑁 `  form a field. 

Proof. The correctness of the definition of the 

introduced operation is clarified as follows. From properties 

18 and 20 it follows that for any 𝐴, 𝐵 ∈ 𝑁′ and their arbitrary 

elements 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵 there is 𝑧, for which 𝑇(𝑥, 𝑦, 𝑧) =
1 и  𝑃(𝑧) = 1. Therefore, by virtue of this definition of the 

operation of multiplication, there is a class 𝐶 ⊂ 𝑁′, for which 

AB = 𝐶 and 𝑦 ∈ 𝐵. Let for some 𝑧′ the following equation 

is correct 𝑇(𝑥, 𝑦, 𝑧′) = 1, but then the property 22 and the 

equation 𝑇(𝑥, 𝑦, 𝑧) = 1 imply that 𝐸(𝑧, 𝑧′) = 1, i.e. 𝑧′ ∈ 𝐶. 
On the other hand, if initially we chose 𝑥 ≠ 𝑥′ ∈ 𝐴 and 𝑦 ≠
𝑦′ ∈ 𝐵, then the equalities 𝐸(𝑥, 𝑥′) = 1, 𝐸(𝑦, 𝑦′) = 1, 

𝑇(𝑥, 𝑦, 𝑧) = 1 and the properties 26, 27 imply 𝑇(𝑥′, 𝑦′, 𝑧) =
1. Thus, the class C does not depend on the original choice 

of the elements of the classes A and B. Consequently, the 

definition of the operation of multiplication is correct. We 

now show that with respect to the operations of addition and 

multiplication, the set of classes 𝑁′ forms a field. It follows 

from Statement 2 that 𝑁′ is an abelian addition group. Let us 

prove that by multiplication 𝑁′ is also an abelian group. 

Consider two arbitrary classes 𝐴, 𝐵 ∈ 𝑁′ and let AB ∈ 𝐶. The 

last equation means that 𝑇(𝑥, 𝑦, 𝑧) = 1 for 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵, 𝑧 ∈
𝐶, but the property 21 in this case implies 𝑇(𝑥, 𝑦, 𝑧) = 1, i.e. 

BA = 𝐶. Hence, the operation is commutative. Property 30 

implies its associativity. Indeed, let us consider (AB)𝐶 and 

let AB = 𝑅,  RC = 𝑇 and BC = 𝑃. Then representatives of 

these classes will satisfy 𝑇(𝑥, 𝑦, 𝑧) = 1, 𝑇(𝑟, 𝑧, 𝑡) =
1, 𝑇(𝑦, 𝑧, 𝑝) = 1, but according to the property 30 we obtain 

𝑇(𝑥, 𝑝, 𝑡) = 1, i.e. (AB)𝐶 = 𝐴(BC). 

Consider the property 33. It states that for ∀𝑥 ∈ 𝐴 ⊂
𝑁′ there is 𝑥−1 ∈ 𝐴−1 ⊂ 𝑁′ such that for any 𝑧 ∈ 𝐶, 

𝑇(𝑥, 𝑥−1, 𝑦) = 1 and 𝑇(𝑦, 𝑧, 𝑧) = 1 are correct. If 𝑧 ∈ 𝑀′, 
the last two equations mean that (AA−1)𝐶 = 𝐶, and AA−1 =
𝐵 ∈ 𝑁′ according to the property 20. Let us show that 𝐴−1 

does not depend on the class А. Indeed, let𝑥1 ≠ 𝑥 and 𝑥, 𝑥1 ∈
𝐴, then 

𝐸(𝑥1, 𝑥) = 1, 𝑇(𝑥, 𝑥−1, 𝑦) = 1, 𝑇(𝑥1, 𝑥1
−1, 𝑦1) =

1, 𝑇(𝑦, 𝑧, 𝑧) = 1, 𝑇(𝑦1, 𝑧, 𝑧) = 1. 

From these equations, on the basis of the properties 

25, 27, 24 we get: 

𝐸(𝑦, 𝑦1) = 1, 𝑇(𝑥1, 𝑥
−1, 𝑦) = 1, 𝑇(𝑥1, 𝑥

−1, 𝑦) =
1, 𝑇(𝑥1, 𝑥

−1, 𝑦1) = 1 and 𝐸(𝑥1
−1, 𝑥−1) = 1, i.e. 𝑥1

−1 ∈ 𝐴−1. 
Let 𝐴1 = 𝐴2 and 𝐴1𝐴1

−1 = 𝐵1 and 𝐴2𝐴2
−1 = 𝐵2 . Then 

𝑇(𝑥1, 𝑥1
−1, 𝑦1) = 1, 𝑇(𝑥2, 𝑥2

−1, 𝑦2) = 1, and taking into 

account the property 32, we get ∀𝑧 : 𝑇 (𝑦1 , 𝑧, 𝑧) =
𝑇(𝑦2, 𝑧, 𝑧) = 1. Now we use property 24, then 𝐸(𝑦1, 𝑦2) =
1, consequently 𝐵1 = 𝐵2. Thus, for any 𝐴 ⊂ 𝑁′ : 𝐴 𝐴−1 = 𝐵 

does not depend on А and since for ∀𝑧 ∈ 𝑁′ we have 

(AA−1)𝐶 = 𝐶, then AA−1 performs the role of one with 

respect to multiplication. Therefore, in future we denote 

AA−1 = 𝐸. 

Finally, we can conclude that with respect to the 

operation of multiplication and addition of a set of classes 𝑁′ 

form groups. These operations are also interconnected so that 

𝑁′ is a field. We will show this. In fact, we checked all the 

axioms of the field, except distributivity. This axiom follows 

from property 31, since for arbitrary classes 

𝐴, 𝐴′, 𝐵, 𝐶, 𝐶′, 𝑇, 𝑃 ⊂ 𝑁′ from the equalities AB = 𝐶, 𝐴′𝐵 =
𝐶,  𝐴 + 𝐴′ = 𝑇,  𝐶 = 𝐶 = 𝑃it follows for their 

representatives that 𝑇(𝑥, 𝑦, 𝑦) = 𝑇(𝑥′, 𝑦, 𝑧′) = 𝑆(𝑥, 𝑥′, 𝑡) =
𝑆(𝑧, 𝑧′, 𝑝) = 1 and from 31 we have 𝑇(𝑡, 𝑦, 𝑝) = 1, i.e. 

TB = 𝑃, consequently AB + 𝐴′𝐵 = (𝐴 + 𝐴′)𝐵. Hence, 

distributivity is satisfied, which completes the proof of the 

assertion. 

RESULTS AND DISCUSSIONS 

We summarize the results of our assertions. Specified 

relationships: 

1) partition the original set into equivalence 

classes; 

2) these equivalence classes form a set 𝑁, on 
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which the operation of addition is induced and with respect 

to it the set 𝑁 is a group; 

3) in the set 𝑁, it is possible to allocate a 

subset 𝑁′ ⊂ 𝑁, on which the initial relations induce the 

operation of multiplication, with respect to the operations of 

multiplication and addition, the set 𝑁 ′ is a field.  

Now we can formulate and prove the theorem, which 

is the goal of this article. 

Theorem 1. The set of equivalence classes 𝑁 is a 

finite-dimensional linear space over a field 𝑁 ′ with the 

operation of addition of vectors defined in Statement 1 and 

with the operation of multiplying a vector by an element of 

the field defined in Statement 3. 

Proof. To begin with, we note that the multiplication 

operation induced by the relation 𝑇 and introduced for the 

elements of the field 𝑁′, similarly to the way it is done in 

statement 3, can be correctly defined for elements 𝑁, i.e. 

multiplying vectors by the elements of the field 𝑁 `.  The 

proof of this fact repeats the corresponding arguments in the 

proof of statement 3. Let us proceed to the proof of the 

theorem. 

We have already shown that with respect to the 

operation of addition, the set of elements (hereinafter 

referred to as their vectors, but denoted by capital letters, 

since they are equivalence classes) 𝑁 form a group. There is 

also a field N and the operation of multiplying the elements 

of the field by a vector. We show that this operation has the 

following properties: 

1) if 𝐴 ∈ 𝑁′, 𝐵, 𝐶 ∈ 𝑁, then 𝐴(𝐵 + 𝐶) =
AB + AC ;  

2) if 𝐴, 𝐵 ∈ 𝑁′, 𝐶 ∈ 𝑁, then (AB)𝐶 =
𝐴(BC) ;  

3) if 𝐴, 𝐵 ∈ 𝑁′, 𝐶 ∈ 𝑁, then (𝐴 + 𝐵)𝐶 =
AC + BC ;  

4) for 𝑂, 𝐸 ∈ 𝑁′ takes place 𝑂𝐴 = 𝑂 

and𝐸𝐴 = 𝐴 for any𝐴 ∈ 𝑁. 

The first of the above properties follows from the 

property of relations 32, similarly to the way it was done in 

Statement 3. The third property and the second as a matter of 

fact are proved by us in the Statement 3 when it was a 

question of associativity and distributivity of the operations 

of addition and multiplication. Let us consider property 4. 

The fact that 𝐸𝐴 = 𝐴 is implied from the property 33 of 

relations. To justify the second equation, we can use property 

29, from which it follows: if we consider 𝑂𝐴 = 𝐶, then for 

the elements it is 𝑦′ ∈ 𝑂 and 𝑆(𝑧, −𝑧, 𝑦) = 1, consequently 

𝐸(𝑦′, 𝑦) = 1. Then 𝑇(𝑦′, 𝑥, 𝑡) = 1, i.e. 𝑂𝐴 = 𝑇 and 

𝐸(𝑦, 𝑡) = 1 or 𝑇 = 𝑂. Hence, 𝑂𝐴 = 𝑂. 

CONCLUSIONS 

Thus, we have shown that the set 𝑁 is a linear space 

over the field 𝑁′. Let us prove its finite dimensionality. It is 

written in property 35. It follows that there are such elements 

𝑡1 ∈ 𝑇1, . . . , 𝑡𝑛 ∈ 𝑇𝑛 that for any 𝑥 ∈ 𝐴 there are unique 

𝑦1(𝑥) ∈ 𝐵1(𝐴), . . . , 𝑦𝑛(𝐴) ∈ 𝐵𝑛(𝐴), for which (on the right 

we will write what is done for classes) 

𝐴) 𝑃(𝑦𝑖) = 1, i.e. 𝐵𝑖(𝐴) ∈ 𝑁 are the elements of the 

field; 

𝐵) 𝑇(𝑦𝑖(𝑥), 𝑡𝑖, 𝑧𝑖) = 1, i.e. 𝐵𝑖(𝐴)𝑇𝑖 =
𝑍𝑖; 𝑆(𝑧1, 𝑧2, 𝑟1) = 1, i.e. 𝐶1 + 𝐶2 = 𝑅1 etc.; 

𝑆(𝑟𝑛−2, 𝑧𝑛, 𝑟𝑛−1) = 1, i.e. 𝑅𝑛−2 + 𝐶𝑛 = 𝑅𝑛−1 or 𝐶1 +
𝐶2+. . . +𝐶𝑛 = 𝑅𝑛−1. 

Then by property 35 it follows that 𝐸(𝑥, 𝑟𝑛−1) = 1, 
consequently, 𝑅𝑛−1 = 𝐴. 

Finally, we obtain the expansion by the basis 

𝑇1, . . . , 𝑇𝑛 

𝐴 = 𝐵1(𝐴)𝑇1+. . . +𝐵𝑛(𝐴)𝑇𝑛 . 

The uniqueness of the classes 𝐵𝑖(𝐴) (unlike the 

elements 𝑦𝑖(𝑥), which are mentioned in property 35) follows 

from c) of property 35. The theorem is proved. 
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