PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Removal of Escherichia coli from Domestic Wastewater Using Electrocoagulation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The objective of this study was to evaluate the efficiency of electrocoagulation in the removal of Escherichia coli from domestic and urban wastewaters and to determine the effects of the main operational parameters on the process. An electrocoagulation reactor with aluminum and iron electrodes was built for this purpose. A factorial design was applied, where amperage, treatment time, and pH were considered as the factors and E. coli percent removal was the response variable. After 20 min of treatment, >97% removal efficiency was achieved. The highest E. coli removal efficiency achieved was 99.9% at a neutral pH of 7, amperage of 3 A, and treatment time of 60 min. However, the removal efficiency of close to 99% was also achieved at natural wastewater pH of 8.5. The statistical analyses showed that the three tested factors significantly affected the E. coli removal percentage (p < 0.05). These results indicate that electrocoagulation has a high disinfection power in a primary reactor in removing water contaminants as well as simultaneously removing pathogenic microorganisms when compared to biological treatment processes. This represents an additional benefit, because it will considerably reduce the use of chlorine during the final disinfection stage.
Rocznik
Strony
42--51
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
  • Universidad de Lima, Av. Javier Prado, 4600 Surco, Lima
Bibliografia
  • 1. Ángel G.P. 2015. Desarrollo de un sistema para la desinfección de agua de consumo mediante tratamiento electroquímico. Universidad, Ciencia y Tecnología, 19 (75), 75–81.
  • 2. Attour A., Touati M., Tlili M., Ben Amor M., Lapicque F., Leclerc J-P. 2014. Influence of operating parameters on phosphate removal from water by electrocoagulation using aluminum electrodes, Separation and Purification Technology, 123, 124–129. doi.org/10.1016/j.seppur.2013.12.030.
  • 3. Bouamra F., Drouiche N., Ahmed D.S., Lounici H. 2012. Treatment of Water Loaded With Orthophosphate by Electrocoagulation. Procedia Eng, 33, 155−162. DOI: 10.1016/j.proeng.2012.01.1188.
  • 4. Boudjema N., Drouiche N., Abdi N., Grib H., Lounici H., Pauss A. & Mameri N. 2014. Treatment of Oued El Harrach river water by electrocoagulation noting the effect of the electric field on microorganisms. Journal of the Taiwan Institute of Chemical Engineers, 45(4), 1564–1570. doi: 10.1016/j.jtice.2013.10.006.
  • 5. Can B.Z., Boncukcuoglu R., Yilmaz A.E., Fil B.A. 2014. Effect of some operational parameters on the arsenic removal by electrocoagulation using iron electrodes. Journal Environment Health Sciences Engineering, 12, 2. doi: 10.1186/2052–336X-12–95.
  • 6. Can O.T. 2014. COD removal from fruit-juice production wastewater by electrooxidation electrocoagulation and electro-Fenton process. Desalination and Water Treatment, 52 (1–3), 65–73. doi.org/10.1080/19443994.2013.781545.
  • 7. Castro-Ríos K., Taborda-Ocampo G. & TorresPalma R. 2014. Experimental Design to Measure Escherichia coli Removal in Water Through Electrocoagulation. International Journal of Electrochemical Science, 9, 610–617.
  • 8. Chen G. 2004. Electrochemical technologies in wastewater treatment. Separation and Purification Technology, 38(1), 11–41. Recuperation de http://www.sciencedirect.com/science/article/pii/S1383586603002636.
  • 9. Chopra A.K. & Sharma A.K. 2014. Disinfection of Biologically Treated Municipal Wastewater using Electrochemical Process, Separation Science and Technology, 49 (17), 2613–2619. DOI: 10.1080/01496395.2014.937815.
  • 10. Ghernaout D., Bides A., Kellil A. & Ghernaout B. 2008. Application of electrocoagulation in Escherichia coli culture and two surface waters. Desalination, 219, 118–125. doi:10.1016/j.desal.2007.05.010.
  • 11. Hakizimana J.P., Gourich B., Chafi M., Stiriba Y., Vial C., Drogui P., Naja J. 2017. Electrocoagulation process in water treatment: a review of electrocoagulation modeling approaches. Desalination, 404, 1–21. doi.org/10.1016/j.desal.2016.10.011.
  • 12. Holt P., Barton G., Mitchell C. 2005. The future for electrocoagulation as a localized water treatment technology. Chemosphere, 59, 355–367. http://dx.doi.org/10.1016/j.chemosphere.2004.10.023.
  • 13. Khandegar V., Saroha A.K. 2013. Electrocoagulation for the treatment of textile industry effluent - A review. J. Environ. Manag, 128, 949–963. https://doi.org/10.1016/j.jenvman.2013.06.043.
  • 14. Mollah M., Morkovsky P., Gomes J., Kesmez M., Parga J. & Cocke D. 2004. Fundamentals, present and future perspectives of electrocoagulation. Journal of Hazardous Materials, 114 (1–3), 199–210. https://doi.org/10.1016/j.jhazmat.2004.08.009.
  • 15. Mouedhen G., Feki M., Wery M.P., Ayedi H.F. 2008. Behavior of aluminum electrodes in electrocoagulation process, Hazard J., Mater, 150, 124–135. doi.org/10.1016/j.jhazmat.2007.04.090.
  • 16. Piña M., Martín A., González C., Prieto F., Guevara A. & García J. 2011. Revisión de variables de diseño y condiciones de operación en la electrocoagulación. Revista Mexicana de Ingeniería Química, 10(2), 257–271. Recuperado de http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1665–273820110002 00010.
  • 17. Ricordel C., Miramon C., Hadjiev D., Darchen A. 2013. Investigations of the mechanism and efficiency of bacteria abatement during electrocoagulation using aluminum electrode. Desalination and Water Treatment, 1, 1–10. doi.org/10.1080/19443994.2013.807474.
  • 18. Silva B.H.L., Melo M.A.B. 2015. Trihalometanos em Água Potável e Riscos de Câncer: Simulação Usando Potencial de Interação e Transformações de Bäcklund. Quím. Nova, São Paulo, 38 (3), 309–315.
  • 19. Yehya T., Chafi M., Balla W., Vial C., Esadki A., Gourich B. 2014. Experimental analysis and modeling of denitrification using electrocoagulation process. Separation and purification Technology, 132, 644–654. doi.org/10.1016/j.seppur.2014.05.022.
  • 20. Zimmermann U., Schulz J., Pleat G. 1973. Transcellular ion flow in Escherichia coli B and electrical sizing of bacterias. Biochips J, 13(10), 1005–1013. https://doi.org/10.1016/S0006–3495(73)86041–2.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2a9ab07b-2f45-4682-b409-b4eda6d6143b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.