PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of the feasibility of determining the volume fraction and characteristics of the size, shape and distribution of γ’ phase precipitates in nickel-based superalloys

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This overview presents a comprehensive exploration of the research methodsemployed for the precise assessment of volume fraction and the detailedcharacterisation of the size, shape and distribution of γ' phase precipitates withinNi-based superalloys. These advanced materials exhibit exceptional mechanicalproperties due to the presence of γ' precipitates. The accurate quantification ofprecipitate parameters is crucial for understanding material behaviour and forthe optimisation of alloy design. In this overview, a spectrum of techniques,including microscopy (SEM, TEM), diffraction (XRD), spectroscopy (EDS, EELS)and advanced imaging (3D-APT, STEM-HAADF, FIB-SEM) is discussed. Strengths,limitations and potential synergies among these methods are highlighted, offeringresearchers a comprehensive toolbox to advance their investigations of γ' phaseprecipitates in Ni-based superalloys.
Rocznik
Strony
art. no. e2023011
Opis fizyczny
Bibliogr. 17 poz., tab., il.
Twórcy
  • Silesian University of Technology, Faculty of Materials Engineering, Department of Materials Technology, Katowice, Poland
Bibliografia
  • 1. Chen, K.-Ch., Chen, T.-Ch., Shiue, R.-K., Tsay, L.-W. (2018). Liquation cracking in the heat-affected zone of IN738 superalloy weld. Metals 8, 387, https://doi:10.3390/met8060387
  • 2. De Graef, M., McHenry, M. E. (2012). Structure of Materials: An introduction to crystallography, diffraction and symmetry. 2nd ed. Cambridge University Press.
  • 3. Escobar-Moreno, I., Aguirre, M. V., Andrés-López, E.-M., Viscasillas, M.J., Barba, D. (2019). Microstructural study of nickel-based superalloys through open-source software of image analysis. In 8 Th European Conference for Aeronautics and Space Sciences (EUCASS). 1 - 4 July 2019, Madrid, Spain. Published by the EUCASS Association. https://doi.org/10.13009/EUCASS2019-206
  • 4. Ghica, C., Solís, C., Munke, J., Stark, A., Gehrmann, B., Bergner, M., Rösler, J., Gilles, R. (2020). HRTEM analysis of the high-temperature phases of the newly developed high-temperature Ni-base superalloy VDM 780 Premium. Journal of Alloys and Compounds 814, 152157, https://doi.org/10.1016/j.jallcom.2019.152157.
  • 5. Goodfellow, A.J., Galindo-Nava, E.I., Christofidou, K.A., Jones, N.G., Martin, T., Bagot, P.A.J., Boyer, C.D., Hardy, M.C., Stone, H.J. (2018). Gamma Prime Precipitate Evolution During Aging of a Model Nickel-Based Superalloy. Metallurgical and Materials Transactions A 49, 718–728. https://doi.org/10.1007/s11661-017-4336-y.
  • 6. Haas, S., Andersson, J., Fisk, M., Park, J.-S., Lienert, U. (2018). Correlation of precipitate evolution with Vickers hardness in Haynes® 282® superalloy: In-situ high-energy SAXS/WAXS investigation. Materials Science and Engineering: A 711, 250-258. https://doi.org/10.1016/j.msea.2017.11.035.
  • 7. Kaufman E.N. (Ed.). (2012). Characterization of Materials. 2nd ed. Wiley Online Library.
  • 8. Leng, Y. (2008). Materials characterization: introduction to microscopic and spectroscopic methods. John Wiley & Sons (Asia) Pte Ltd.
  • 9. Palmert, F. (2009) Oxidation and degradation of nickel-base alloys at high temperatures. Master of Science Thesis, Stockholm, Sweden.
  • 10. Park, J.-U., Jun, S.-Y., Lee, B.H., Jang, J.H., Lee, B.-S., Lee, H.-J., Lee, J.-H., Hong, H.-U. (2022). Alloy design of Ni-based superalloy with high γ′ volume fraction suitable for additive manufacturing and its deformation behavior. Additive Manufacturing 52, 102680, https://doi.org/10.1016/j.addma.2022.102680.
  • 11. Rakoczy, Ł., Milkovič, O., Rutkowski, B., Cygan, R., Grudzień-Rakoczy, M., Kromka, F., Zielińska-Lipiec, A. (2020). Characterization of γ′ precipitates in cast Ni-based superalloy and their behaviour at high-homologous temperatures studied by TEM and in situ XRD. Materials 13, 2397. https://doi.org/10.3390/ma13102397.
  • 12. Runčevski, T., Brown, C.M. (2021). The Rietveld Refinement Method: Half of a Century Anniversary. Crystal Growth and Design 21, 9, 4821–4822. https://doi.org/10.1021/acs.cgd.1c00854
  • 13. Sharma, S.K. (Ed.). (2018). Handbook of materials characterization. Springer Cham Publisher.
  • 14. Smith, T.M., Zarkevich, N.A., Egan, A.J., Stuckner, J., Gabb, T.P., Lawson, J.W., Mills, M.J.(2021). Utilizing local phase transformation strengthening for nickel-base superalloys. Communications Materials 2, 106, 1-9. https://doi.org/10.1038/s43246-021-00210-6.
  • 15. Sun, F. (2021). Integrated TEM/transmission-EBSD for recrystallization analysis in nickel-based disc superalloy. Progress in Natural Science: Materials International 31, 1, 63-67. https://doi.org/10.1016/j.pnsc.2020.11.003.
  • 16. Wang, Z., Muránsky, O., Zhu, H., Wei, T., Sokolova, A., Short, K., Wright, R.N. (2020). On the kinetics of gamma prime (γ’) precipitation and its strengthening mechanism in Alloy 617 during a long-term thermal aging. Materialia 11, 100682, https://doi.org/10.1016/j.mtla.2020.100682.
  • 17. Ziętara, M, Kruk, A., Cempura, G., Gruszczyński, A., Czyrska-Filemonowicz, A. (2020). Fourth-generation single crystal nickel base superalloy for jet engine turbine blades application. 3D imaging and metrology of microstructure elements. Materials Engineering SIGMA Publisher 3, https://doi.org/10.15199/28.2020.3.1
Uwagi
1. Section "Mechanics"
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2a93853c-844e-4bd2-911b-aa1d71f30e38
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.