PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Radiation synthesis of poly(acrylic acid) nanogels for drug delivery applications – post-synthesis product colloidal stability

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
International Conference on Development and Applications of Nuclear Technologies NUTECH-2020 (04–07.10.2020; Warsaw, Poland)
Języki publikacji
EN
Abstrakty
EN
Synthesis of polymer nanogels (NGs) for biomedical applications is considered to be a very promising application in radiation engineering. Under high-dose pulse irradiation of dilute aqueous polymer solution, reactive species generated by water radiolysis can create multiple radicals on each macromolecule and consequently induce intramolecular cross-linking of polymer chains, resulting in NG formation. The obtained products are free from harmful monomers, initiators, and cross-linking agents, which makes them potentially applicable for drug delivery applications. One of the biggest challenges in handling and use of nanoparticles, however, is the colloidal stability, when aqueous suspensions are stored for prolonged periods. Therefore, development of the best protocols for the particular nanocarrier storage is key. To address this need, we have performed the prospective study in which we systematically assessed the influence of various processing and storage scenarios feasible in our lab, on the colloidal stability of the radiation-synthesized poly(acrylic acid) (PAA) NG particles in suspension. This allowed us to choose the optimal way of handling the product after its synthesis. We confirmed that none of the strategies we used and tested are substantially detrimental to our product. Filtration with 0.2-m filters was proven sufficient for sample purification and prolonged storage in aqueous suspension did not exert a negative effect on the colloidal stability of particles suspension. We have also demonstrated that lyoprotectant- -free lyophilization was suitable for our polymer nanoparticles. This is an important fact for further application of particles as nanocarriers for biologically active compounds such as targeting ligands or therapeutic moieties.
Czasopismo
Rocznik
Strony
179--186
Opis fizyczny
Bibliogr. 43 poz., rys.
Twórcy
  • Lodz University of Technology Faculty of Chemistry Institute of Applied Radiation Chemistry Wroblewskiego 15 Str., 93-590 Lodz, Poland
  • Lodz University of Technology Faculty of Chemistry Institute of Applied Radiation Chemistry Wroblewskiego 15 Str., 93-590 Lodz, Poland
  • Lodz University of Technology Faculty of Chemistry Institute of Applied Radiation Chemistry Wroblewskiego 15 Str., 93-590 Lodz, Poland
  • Lodz University of Technology Faculty of Chemistry Institute of Applied Radiation Chemistry Wroblewskiego 15 Str., 93-590 Lodz, Poland
  • Lodz University of Technology Faculty of Chemistry Institute of Applied Radiation Chemistry Wroblewskiego 15 Str., 93-590 Lodz, Poland
Bibliografia
  • 1. Oh, J. K., Lee, D. I., & Park, J. M. (2009). Biopolymerbased microgels/nanogels for drug delivery applications. Prog. Polym. Sci., 34(12), 1261–1282. DOI:10.1016/j.progpolymsci.2009.08.001.
  • 2. Dispenza, C., Adamo, G., Sabatino, M. A., Grimaldi, N., Bulone, D., Bondì, M. L., Rigogliuso, S., & Ghersi, G. (2014). Oligonucleotides-decorated-poly(N-vinylpyrrolidone) nanogels for gene delivery. J. Appl.Polym. Sci., 131(2), 1–8. DOI: 10.1002/app.39774C.
  • 3. Picone, P., Sabatino, M. A., Ditta, L. A., Amato, A., San Biagio, P. L., Mulè, F., Giacomazza, D.,Dispenza, C., & Di Carlo, M. (2018). Nose-to-brain delivery of insulin enhanced by a nanogel carrier. J. Control. Release, 270, 23–36. DOI: 10.1016/j.jconrel.2017.11.040.
  • 4. Argentiere, S., Blasi, L., Ciccarella, G., Barbarella, G., Cingolani, R., & Gigli, G. (2009). Synthesis ofpoly(acrylic acid) nanogels and application in loading and release of an oligothiophene fluorophore and its bovine serum albumin conjugate. Macromol. Symp., 281(1), 69–76. DOI: 10.1002/masy.200950709.
  • 5. Argentiere, S., Blasi, L., Morello, G., & Gigli, G. (2011). A novel pH-responsive nanogel for the controlled uptake and release of hydrophobic and cationic solutes. J. Phys. Chem. C, 115(33), 16347–16353.DOI: 10.1021/jp204954a.
  • 6. De Jong, W. H., & Borm, P. J. (2008). Drug delivery and nanoparticles: applications and hazards. Int. J. Nanomed., 3(2), 133–149. DOI: 10.2147/ijn.s596.
  • 7. Molina, M., Asadian-Birjand, M., Balach, J., Bergueiro, J., Miceli, E., & Calderón, M. (2015).Stimuli-responsive nanogel composites and their application in nanomedicine. Chem. Soc. Rev., 44(17), 6161–6186. DOI: 10.1039/c5cs00199d.
  • 8. Munavirov, B. V., Filippov, A. V., Rudakova, M. A., & Antzutkin, O. N. (2014). Polyacrylic acid modifies local and lateral mobilities in lipid membranes. J. Dispers. Sci. Technol., 35(6), 848–858. DOI: 10.1080/01932691.2013.823096.
  • 9. Miao, X., Ho, S. L., Tegafaw, T., Cha, H., Chang, Y., Oh, I. T., Yasenn, A. M., Marasini, S., Ghazanfari, A., Yue, H., Chae, K. S., & Lee, G. H. (2018). Stable and non-toxic ultrasmall gadolinium oxide nanoparticle colloids (coating material = polyacrylic acid) as high-performance: T1 magnetic resonance imaging contrast agents. RSC Adv., 8(6), 3189–3197. DOI: 0.1039/c7ra11830a.
  • 10. González-Gómez, M. A., Belderbos, S., Yañez-Vilar, S., Piñeiro, Y., Cleeren, F., Bormans, G., Deroose, C. M., Gsell, W., Himmelreich, U., & Rivas, J. (2019). Development of superparamagnetic nanoparticles coated with polyacrylic acid and aluminum hydroxide as an effi cient contrast agent for multimodal imaging. Nanomaterials, 9(11), 1–20. DOI: 10.3390/nano9111626.
  • 11. Khandhar, A. P., Liang, H., Simpson, A. C., Reed, S. G., Carter, D., Fox, C. B., & Orr, M. T. (2020). Physicochemical structure of a polyacrylic acid stabilized nanoparticle alum (nanoalum) adjuvant governs TH1 differentiation of CD4+ T cells. Nanoscale, 12(4), 2515–2523. DOI: 10.1039/c9nr09936k.
  • 12. Hardin, N. Z., Ravula, T., Di Mauro, G., & Ramamoorthy, A. (2019). Hydrophobic functionalization of polyacrylic acid as a versatile platform for the development of polymer lipid nanodisks. Small, 15(9), 1–5. DOI: 10.1002/smll.201804813.
  • 13. Huang, L., Wang, J., Huang, S., Siaw-Debrah, F., Nyanzu, M., & Zhuge, Q. (2019). Polyacrylic acidcoated nanoparticles loaded with recombinant tissue plasminogen activator for the treatment of mice with ischemic stroke. Biochem. Bioph. Res. Co., 516(2), 565–570. https://doi.org/10.1016/j.bbrc.2019.06.079.
  • 14. Elliott, J. E., MacDonald, M., Nie, J., & Bowman, C. N. (2004). Structure and swelling of poly(acrylic acid) hydrogels: Effect of pH, ionic strength, and dilution on the crosslinked polymer structure. Polymer, 45(5), 1503–1510. DOI: 10.1016/j.polymer.2003.12.040.
  • 15. De la Torre, P. M., Enobakhare, Y., Torrado, G., & Torrado, S. (2003). Release of amoxicillin from polyionic complexes of chitosan and poly(acrylic acid) study of polymer/polymer and polymer/drug interactions within the network structure. Biomaterials, 24(8), 1499–1506. DOI: 10.1016/S0142-9612(02)00512-43.
  • 16. Hu, Y., Jiang, X., Ding, Y., Ge, H., Yuan, Y., & Yang, C. (2002). Synthesis and characterization of chitosan-poly(acrylic acid) nanoparticles. Biomaterials, 23(15), 3193–3201. DOI: 10.1016/S0142-9612(02)00071-6.
  • 17. Ulanski, P., Bothe, E., Hildenbrand, K., Rosiak, J. M., & von Sonntag, C. (1996). Hydroxyl-radical-induced reactions of poly(acrylic acid); a pulse radiolysis, EPR and product study. Part I. Deoxygenated aqueous solutions. J. Chem. Soc. Perkin Trans. 2, 1, 13–22. DOI: 10.1039/p29960000013.
  • 18. Ulański, P., Bothe, E., Hildenbrand, K., Rosiak, J. M., & von Sonntag, C. (1996). Hydroxyl-radical-induced reactions of poly(acrylic acid); a pulse radiolysis, EPR and product study. Part II. Oxygenated aqueous solutions. J. Chem. Soc. Perkin Trans. 2, 1, 23–28. DOI: 10.1039/p29960000023.
  • 19. Chen, B., Jerger, K., Fréchet, J. M. J., & Szoka, F. C. (2009). The infl uence of polymer topology on pharmacokinetics: Differences between cyclic and linear PEGylated poly(acrylic acid) comb polymers. J. Control. Release, 140(3), 203–209. DOI: 10.1016/j.jconrel.2009.05.021.
  • 20. Munavirov, B., Gnezdilov, O., Rudakova, M., Antzutkin, O. N., & Filippov, A. (2013). Interaction of polyacrylic acid with lipid bilayers: Effect of polimer mass. Magn. Reson. Chem., 51(11), 750–755. DOI: 10.1002/mrc.4013.
  • 21. Yessine, M. -A., & Leroux, J. -C. (2004). Membranedestabilizing polyanions: interaction with lipid bilayers and endosomal escape of biomacromolecules. Adv. Drug. Deliver. Rev., 56(7), 999–1021. DOI: 10.1016/j.addr.2003.10.039.
  • 22. Fujiwara, M., Grubbs, R. H., & Baldeschwieler, J. D. (1997). Characterization of pH-dependent poly(acrylic acid) complexation with phospholipid vesicles. J. Colloid Interf. Sci., 185(1), 210–216. DOI: 10.1006/jcis.1996.4608.
  • 23. Chieng, Y. Y., & Chen, S. B. (2010). Interaction between poly(acrylic acid) and phospholipid vesicles: Effect of pH, concentration, and molecular weight. J. Phys. Chem. B, 114(14), 4828–4835. DOI:10.1021/jp1002403..
  • 24. Argentiere, S., Blasi, L., Ciccarella, G., Barbarella, G., Cingolani, R., & Gigli, G. (2010). Nanogels of poly(acrylic acid): Uptake and release behavior with fluorescent oligothiophene-labeled bovine serum albumin. J. Appl. Polym. Sci., 116(5), 2808–2815. DOI: 10.1002/app.31691.
  • 25. Mackiewicz, M., Stojek, Z., & Karbarz, M. (2019). Synthesis of cross-linked poly(acrylic acid) nanogels in an aqueous environment using precipitation polymerization: unusually high volume change. R. Soc. Open Sci., 6(11), 190981. DOI: 10.1098/rsos.190981.
  • 26. Rosiak, J. M., & Ulański, P. (1999). Synthesis of hydrogels by irradiation of polymers in aqueous solution. Radiat. Phys. Chem., 55(2), 139–151. DOI: 10.1016/S0969-806X(98)00319-3.
  • 27. Ulanski, P., Kadlubowski, S., & Rosiak, J. M. (2002).Synthesis of poly(acrylic acid) nanogels by preparative pulse radiolysis. Radiat. Phys. Chem., 63(3/6), 533–537. DOI: 10.1016/S0969-806X(01)00549-7.
  • 28. Ghaffarlou, M., Sütekin, S. D., & Güven, O. (2018). Preparation of nanogels by radiation-induced crosslinking of interpolymer complexes of poly(acrylic acid) with poly(vinyl pyrrolidone) in aqueous medium. Radiat. Phys. Chem., 142, 130–136. DOI: 10.1016/j.radphyschem.2017.04.019.
  • 29. Ghorbaniazar, P., Sepehrianazar, A., Eskandani, M., Nabi-Meibodi, M., Kouhsoltani, M., & Hamishehkar, H. (2015). Preparation of poly acrylic acid-poly acrylamide composite nanogels by radiation technique. Adv. Pharm. Bull., 5(2), 269–275. DOI: 10.15171/apb.2015.037.
  • 30. Kadlubowski, S., Ulanski, P., & Rosiak, J. M. (2012). Synthesis of tailored nanogels by means of two-stage irradiation. Polymer, 53(10), 1985–1991. DOI: 10.1016/j.polymer.2012.03.018.
  • 31. Henke, A., Kadlubowski, S., Ulanski, P., Rosiak, J. M., & Arndt, K. F. (2005). Radiation-induced crosslinking of polyvinylpyrrolidone-poly(acrylic acid) complexes. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 236, 391–398. DOI: 10.1016/j.nimb.2005.04.003.
  • 32. Schmidt, T., Janik, I., Kadłubowski, S., Ulański, P., Rosiak, J. M., Reichelt, R., & Arndt, K. -F. (2005).Pulsed electron beam irradiation of dilute aqueous poly(vinyl methyl ether) solutions. Polymer, 46(23), 9908–9918. DOI: 10.1016/j.polymer.2005.07.077.
  • 33. Kadlubowski, S., Grobelny, J., Olejniczak, W., Cichomski, M., & Ulanski, P. (2003). Pulses of fast electrons as a tool to synthesize poly(acrylic acid) nanogels. Intramolecular cross-linking of linear polymer chains in additive-free aqueous solution. Macromolecules, 36(7), 2484–2492. DOI: 10.1021/ma021628s.
  • 34. Ulanski, P., & Rosiak, J. M. (1999). The use of radiation technique in the synthesis of polymeric nanogels.Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 151(1/4), 356–360. DOI: 10.1016/S0168-583X(99)00085-3.
  • 35. Ulański, P., Janik, I., & Rosiak, J. M. (1998). Radiation formation of polymeric nanogels. Radiat. Phys. Chem., 52(1), 289–294. DOI: 10.1016/S0969-806X(98)00155-8.
  • 36. Matusiak, M., Kadlubowski, S., & Ulanski, P. (2018). Radiation-induced synthesis of poly(acrylic acid) nanogels. Radiat. Phys. Chem., 142, 125–129. DOI: 10.1016/j.radphyschem.2017.01.037.
  • 37. Hoshyar, N., Gray, S., Han, H., & Bao, G. (2016). The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine, 11(6), 673–692. DOI: 10.2217/nnm.16.5.
  • 38. Mier, W., Babich, J., & Haberkorn, U. (2014). Is nano too big? Eur. J. Nucl. Med. Mol. Imaging, 41(1), 4–6.DOI: 10.1007/s00259-013-2574-9.
  • 39. Ghimire, A., Zore, O. V., Thilakarathne, V. K., Briand, V. A., Lenehan, P. J., Lei, Y., Kasi, R. M., & Kumar, C. V. (2015). “Stable-on-the-table” biosensors: hemoglobin-poly(acrylic acid) nanogel bioelectrodes with high thermal stability and enhanced electroactivity. Sensors, 15(9), 23868–23885. DOI: 10.3390/s150923868.
  • 40. World Health Organization (2018). Stability testing of active and finished pharmaceutical products. WHO Expert Committee Preparations for Pharmaceutical on Specifications, Fifty Second Report, Annex 10.WHO. (Technical Report Series No. 1010).
  • 41. Brasch, U., & Burchard, W. (1996). Preparation and solution properties of microhydrogels from poly(vinyl alcohol). Macromol. Chem. Phys., 197(1), 223–235. DOI: 10.1002/macp.1996.021970117.
  • 42. Abdelwahed, W., Degobert, G., & Fessi, H. (2006). A pilot study of freeze drying of poly(epsiloncaprolactone) nanocapsules stabilized by poly(vinyl alcohol): Formulation and process optimization. Int. J. Pharm., 309(1/2), 178–188. DOI: 10.1016/j.ijpharm.2005.10.003.
  • 43. Pikal, M. J. (2004). Mechanisms of proteinstabilization during freeze-drying and storage: The relative importance of thermodynamic stabilization and glassy state relaxation dynamics. In J. C. May & L. Rey (Eds.), Freeze-drying/lyophilization of pharmaceutical and biological products (pp. 63–107). Boca Raton: CRC Press.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2a8b21e3-5717-428f-84aa-8fc44c8e33b9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.