Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aim of this study was to perform the experiments of detonation propagating in stoichiometric hydrogen-methane-air mixtures in partially confined geometry. The experiments were done to examine the influence of the methane fraction in fuel on the ability of detonation to propagate. Four types of gaseous mixture composition were used: 0%, 2.5%, 5% and 10% of methane in fuel. The critical height h* was found for each mixture. Furthermore, by using the smoked-foil technique the detonation cell sizes λwere measured and the correlations h*/λ were calculated for each mixture. The results showed that detonation of hydrogen-methane-air mixture may propagate in partially confined geometry only when the channel height is at least equal to 1 cell size which is similar to the condition for planar detonation propagating in closed, rectangular channel. The research showed high influence of the boundary dividing the flammable layer from the air layer.
Czasopismo
Rocznik
Tom
Strony
121--130
Opis fizyczny
Bibliogr. 12 poz., rys., tab.
Twórcy
autor
- Warsaw University of Technolog Institute of Heat Engineering Nowowiejska 21/25, 00-665 Warsaw, Poland, tel.: (48-22) 234-5241
autor
- Warsaw University of Technolog Institute of Heat Engineering Nowowiejska 21/25, 00-665 Warsaw, Poland, tel.: (48-22) 234-5241
autor
- Warsaw University of Technolog Institute of Heat Engineering Nowowiejska 21/25, 00-665 Warsaw, Poland, tel.: (48-22) 234-5241
Bibliografia
- [1] Rudy W., Kuznetsov M., Porowski R., Teodorczyk A., Grune J. and Sempert K.: Critical conditions of hydrogen-air detonation in partially confined geometry, Proceedings of the Combustion Institute 34, 2013, 1965–1972.
- [2] Grune J., Sempert K., Kuznetsov M., Jordan T.: Experimental investigation of fast flame propagation in stratified hydrogen-air mixtures in semi-confined flat layers, Journal of Loss Prevention in the Process Industries 26, 2013, 1442-1451.
- [3] Grune J., Sempert K., Haberstroh H., Kuznetsov M., Jordan T., Experimental investigation of hydrogen-air deflagrations and detonations in semi-confined flat layers, Journal of Loss Prevention in the Process Industries 26, 2013, 317-323.
- [4] Kuznetsov M., Yanez J., Grune J., Friedrich A., Jordan T., Hydrogen combustion in a flat semi-confined layer with respect to the Fukushima Daiichi accident, Nuclear Engineering and Design 286, 2015, 36-48.
- [5] Yanez J., Kuznetsov M., Souto-Iglesias A., An analysis of the hydrogen explosion in the Fukushima-Daiichi accident, International Journal of Hydrogen Energy 40, 2015, 8261-8280.
- [6] Boeck L. R., Hasslberger J., Sattelmayer T., Flame Acceleration in Hydrogen/Air Mixtures with Concentration Gradients, Combustion Science and Technology 186, 2014, 1650-1661.
- [7] Boeck L. R., Deflagration-to-Detonation Transition and Detonation Propagation in H2-Air Mixtures with Transverse Concentration Gradients, Technische Universität München Institut für Energietechnik, 2015.
- [8] Matignon C., Desbordes D., Presles H. N.: Détonabilité de mélanges stoechiométriques méthane–hydrogène–oxygène–azote, C. R. Mecanique 334, 2006, 238–242.
- [9] Bozier O., Sorin R., VirotF., Zitoun R., Desbordes D., Detonability of binary H2/CH4-air mixtures, International Conference on Hydrogen Safety, 2009.
- [10] Dabora, E.K., The influence of a compressible boundary on the propagation of gaseous detonations, Technical report, NASA Project no. 3559-E, 1963.
- [11] Murray S. B., Numa Manson on velocity deficits and detonation stability, Shock wave 18, 2008, 255-268.
- [12] Bjerketvedt D., Bakke J.R., van Wingerden K., Gas Explosion Handbook, Journal of Hazardous Materials 52, 1997, 1-150.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2a8731f1-eb39-4d82-95b6-580f4bb434e7