PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Disturbance attenuation problem using a differential game approach for feedback linear quadratic descriptor systems

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper studies the H∞ disturbance attenuation problem for index one descriptor systems using the theory of differential games. To solve this disturbance attenuation problem the problem is converted into a reduced ordinary zero-sum game. Within a linear quadratic setting the problem is solved for feedback information structure.
Rocznik
Strony
445--462
Opis fizyczny
Bibliogr. 30 poz., wzory
Twórcy
  • Mathematics Department UIN Sunan Kalijaga, Indonesia
Bibliografia
  • [1] T. Başar and P. Bernhard: H∞ Optimal Control and Related Minimax Design Problem. Modern Birkhäuser Classics, Boston, 1995.
  • [2] W. A. van den Broek, J. C. Engwerda and J. M. Schumacher,: Robust equilibria in indenite linear-quadratic dierential games. J. of Optimization Theory and Applications, 119 (2003), 565-595
  • [3] R. A. De Carlo and R. Saeks: Interconected Dynamical Systems. Marcel Dekker, New York, 1981.
  • [4] J. C. Engwerda: Linear Quadratic Dynamic Optimization and Differential Games. John Wiley & Sons, West Sussex, 2005.
  • [5] J. C. Engwerda and Salmah: Feedback nash equilibria for linear quadratic descriptor differential games. Automatica, 48 (2012), 625-631.
  • [6] J. C. Engwerda, Salmah and I.E. Wij ayanti : The (multi-player) linear quadratic feed-back state regulator problem for index one descriptor systems. Proc. European Control Conf. (Budapest), (2009).
  • [7] F. Gantm acher: Theory of Matrices. 2 Chelsea Publishing Company, New York, 1959.
  • [8] T. Geerts : Solvability conditions, consistency, and weak consistency for lineardierential- algebraic equations and time-invariant singular systems: The general case. Linear Algebra and its Applications, 181 (1993), 111-130.
  • [9] H. Hemami and B.F. Wyman: Modeling and control of constrained dynamic systems with application to biped locomotion in the frontal plane. IEEE Trans. on Automatic Control, 24 (1979), 526-535.
  • [10] J. C. Huang, H. S. Wang and F. R. Chang: Robust H∞ control for uncertain linear time-invariant descriptor systems. Proc. IEE Control Theory Applications, 147 (2000), 648-654.
  • [11] K. Zhou and J. C. Doyle: Essentials of Robust Control. Prentice-Hall, New Jersey, 1998.
  • [12] J. Kauts ky, N. K. Nic holas and E. K-W. Chu: Robust pole assignment in singular control systems. Linear Algebra and its Applications, 121 (1989), 9-37.
  • [13] A. Kumar and P. Daouti dis : State-space realizations of linear dierential algebraic- equation systems with control-dependent state space. IEEE Trans. on Automatic Control, 41 (1996), 269-274.
  • [14] G. Kun: Stabilizability, controllability, and optimal strategies of linear and nonlinear dynamical games. PhD Thesis, RWTH-Aachen, Germany, 2001.
  • [15] H. J. Lee, S. W. Kau and Y. S. Liu: An improvement on robust h1 control for uncertain continuous-time descriptor systems. Int. J. of Control, Automation, and Systems, 4 (2006), 271-280.
  • [16] D. G. Luenberger: Dynamic equations in descriptor form, IEEE Trans. on Automatic Control, 22 (1977), 312-321.
  • [17] D. G. Luenberger and A. Arbel: Singular dynamic leontief systems. Econometrica, 45 (1977), 991-995.
  • [18] W. M. McEneaney: Robust control and dierential games on a nite time horizon. Mathematics of Control, Signals, and Systems, 8 (1995), 138-166.
  • [19] J. K. Mills and A. A. Goldenberg: Force and position control of manipulators during constrained motion tasks, IEEE Trans. on Robotics and Automation, 5 (1989), 30-46.
  • [20] M. W. Must hofa, Salmah, J. C. Engwerda and A. Suparwanto: Robust optimal control design with dierential game approach for open-loop linear quadratic descriptor systems. J. of Optimization Theory and Applications, DOI 10.1007/ s10957-015-0750-8, (2015).
  • [21] M. W. Must hofa, Salmah, J. C. Engwerda and A. Suparwanto: Feedback saddle point equilibria for soft-constrained zero-sum linear quadratic descriptor dierential games. Archives of Control Sciences, 23 (2013), 473-493.
  • [22] M. W. Must hofa, Salmah, J. C. Engwerda and A. Suparwanto: The open-loop zero-sum linear quadratic impulse free descriptor dierential game. Int. J. on Applied Mathematics and Statistics, 35 (2013), 29-44.
  • [23] R. W. Newc omb : The semistate description of nonlinear time-variable circuits. IEEE Trans. on Circuits Systems, 28 (1981), 62-71.
  • [24] R. W. Newc omb and B. Dziurla: Some circuits and systems applications of semistate theory. Circuits Systems Signal Processes, 8 (1989), 235-260.
  • [25] P. V. Reddy and J. C. Engwerda: Feedback nash equilibria for descriptor dierential game using matrix projectors. SIAM J. on Matrix Analysis and Applications, 32 (2013), 686-708.
  • [26] Salmah: Optimal control of regulator descriptor systems for dynamic games, PhD Thesis, Universitas Gadjah Mada, Indonesia, 2006.
  • [27] B. Scott : Power system dynamic response calculations. IEEE Proceedings, 67 (1979), 219-247.
  • [28] S. Singh and R. W. Liu: Existence of state equation representation of linear largescale dynamical systems. IEEE Trans. Circuits Systems, 20 (1973), 239-246.
  • [29] H. S. Wang, C. F. Yung and F. R. Chang: H∞ Control for Nonlinear Descriptor Systems. Springer Verlag, London, 2006.
  • [30] H. Xu and K. Miz ukami : Linear-quadratic zero-sum dierential games for generalized state space systems. IEEE Trans. on Automatic Control, 39 (1994), 143-147.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2a832ed5-8938-4b99-b987-0aac5dc2d7ef
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.