DOLOMITE AND CALCITE ENHANCEMENT OF WHEY PROTEIN ISOLATE HYDROGELS

Karl Norris¹, Samuel C. Tsang¹, Jemma G. Kerns², Ewelina Kłosek-Wawrzyn³, Zbigniew Jaegermann⁴, Timothy E.L. Douglas¹

¹ ENGINEERING DEPT., LANCASTER UNIVERSITY, UK ² LANCASTER MEDICAL SCHOOL, FACULTY OF HEALTH AND MEDICINE, LANCASTER UNIVERSITY, UK ³ DEPT. BUILDING MATERIALS TECHNOLOGY, AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY, POLAND ⁴ INSTITUTE OF CERAMICS AND BUILDING MATERIALS, WARSAW, POLAND *E-MAIL: T.DOUGLAS@LANCASTER.AC.UK

[ENGINEERING OF BIOMATERIALS 148 (2018) 98]

Introduction

Calcite, the thermodynamically most stable polymorph of calcium carbonate (CaCO₃), has successfully been used promote bone regeneration Dolomite [1]. to $(CaMg(CO_3)_2)$, is a form of magnesium calcite, which is used in the building industry and is available in large amounts in Poland. Mg promotes bone-forming cell proliferation as a component of calcium phosphate (CaP) [2]. We hypothesized that Mg incorporation into CaCO₃ would also positively influence cell behaviour, and that addition of dolomite and calcite to hydrogels, (highly hydrated three-dimensional polymer networks) would improve cell proliferation. Addition of preformed inorganic particles to hydrogels is a common mineralization strategy [3]. In this study, dolomite and calcite particles were added to hydrogels of whey protein isolate (WPI), an inexpensive by-product from the dairy industry, and has displayed positive biological effects in our previous work [4]. WPI hydrogels can be formed by heat sterilization, e.g. autoclaving.

Materials and Methods

Synthetic calcite was prepared as described previously [5]. Dolomite was obtained from the Ołdrzychowice region of Lower Silesia, Poland, as described previously [6]. Composites were produced by the heat-induced gelation of 50% (w/v) WPI solution, with 30% (w/v) calcite or dolomite particles added (denoted hereafter as WPI-calcite and WPI-dolomite, respectively). 1 ml composites were formed in 2 ml Eppendorf tubes.

Composites were investigated by assessing particle distribution (Micro-CT imaging) and cytocompatibility. 10,000 MG63 cells were seeded on WPI-calcite and WPI-dolomite (n=5) and polystyrene (n=4). Proliferation after 1, 4 and 7 days was assessed using the fluorescent PrestoBlue assay. Fluorescence microscopy after DAPI staining was also performed.

Results and Discussion

Micro-CT analysis (Bruker) suggested good crosssectional distribution of both calcite and dolomite particles within hydrogel-particle composites (FIG. 1).

MG63 cells proliferated on both WPI-calcite and WPIdolomite, though to a lesser extent than on polystyrene (FIG. 2).

Cells showed a well-spread morphology (FIG. 3). Proliferation increased over 7 days. No significant differences were observed between WPI-calcite and WPI-dolomite. Further work will focus on increased physicochemical characterization of composites and cell biological characterization, possibly with primary cells instead of a cell line.

FIG. 1. Micro-CT cross-sections of composites (diameter 8 mm). Left: WPI-calcite. Right: WPI-dolomite. White dots indicate the presence of mineral. Black dots indicate cavities.

FIG. 2. Proliferation of MG63 cells over 7 days on Polystyrene, WPI-calcite and WPI-dolomite. Error bars are representative of standard deviation.

FIG. 3. Fluorescent microscopy after 7 days after DAPI staining. Magnification x5. Left: WPI-calcite. Right: WPI-dolomite.

Conclusions

WPI-calcite and WPI-dolomite composites both displayed cytocompatibility and supported MG63 cell adhesion and proliferation. Thus, both composites appear to be promising materials for bone tissue regeneration.

Acknowledgement

United Kingdom Society for Biomaterials Lab-2-Lab grant, Lancaster University FST grant, N8 Agrifood pump priming grant "Food2Bone" (all T.E.L.D.).

References

 Fujita Y et al.J Biomed Mater Res 1991;25;991–1003.
Douglas TEL et al. J Tissue Eng Regen Med.
2016;10:938-954.
Gkioni K et al. Tissue Eng Part B Rev. 2010;16:577-85.
Douglas TEL et al. J Dairy Sci.
2018;101:28-36.
Jaegermann Z et al. Szkło i Ceramika, 2018, 3:7-10.
Kłosek-Wawrzyn E. and Bugaj A, Ceramic Materials 2016;68;236-241.