Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Heat and mass transfer in the process of friction stir welding (FSW) determine the weld formation quality. Meanwhile, the formation of voids in FSW limits welding speed improvement and welding efficiency. Although superimposing ultrasonic vibration can be adopted as an effective means to restrain the formation of voids, the potential suppression mechanism was still unrevealed. Herein, a multi-physical model using the shear stress boundary conditions was put forward to quantitatively study the influence of ultrasonic vibration on the heat and mass transfer behaviors and the resulting weld formation which was also validated experimentally. Our results show that ultrasonic vibration in FSW slightly enhances the heat flux at the tool-work piece interfacial contact surface as well as the plastic deformation heat generation near the tool. Therefore, the high-temperature area (higher than 690 K) near the tool pin side increases from 2.11 to 2.29 mm. The slightly higher heat rate and temperature enhance the fluidity of plastic material, resulting in an obvious increase in the flow velocity. As a consequence, the plastic material moves farther to fill the cavity at the rear advancing side, which is conducive to eliminating the void defects. The maximum strain rate on z = 2 mm horizontal plane at the AS is 206.7 s−1 in UVeFSW, while it is 13.5 s−1 in CFSW. The strain rate of the contact interface on AS increases by nearly 5 times, which implies an enhanced plastic material flow and is the main reason for suppressing void defects by superimposing ultrasonic vibration in FSW.
Czasopismo
Rocznik
Tom
Strony
art. e256, 1--16
Opis fizyczny
Bibliogr. 40 poz., il., tab., rys., wykr.
Twórcy
autor
- Institute of Materials Joining, Shandong University, Jinan, People’s Republic of China
autor
- Institute of Materials Joining, Shandong University, Jinan, People’s Republic of China
autor
- Institute of Materials Joining, Shandong University, Jinan, People’s Republic of China
- Shandong University-Weihai Research Institute of Industrial Technology, Weihai, People’s Republic of China
autor
- Institute of Materials Joining, Shandong University, Jinan, People’s Republic of China
- Shandong University-Weihai Research Institute of Industrial Technology, Weihai, People’s Republic of China
autor
- Department of Mechanical Engineering, Tsinghua University, Beijing, People’s Republic of China
Bibliografia
- 1. Xiao J, Wang M, Liu H, Liu S, Zhao H, Gao J. A constant plunge depth control strategy for robotic FSW based on online trajectory generation. Robot Comput Integr Manuf. 2023. https://doi.org/10.1016/j. rcim.2022.102479.
- 2. de Viveiros BVG, da Silva RMP, Donatus U, Costa I. Welding and galvanic coupling effects on the electrochemical activity of dissimilar AA2050 and AA7050 aluminum alloys welded by Friction Stir Welding (FSW). Electrochim Acta. 2023. https://doi. org/10.1016/j.elect acta.2023.142196.
- 3. Zhao J, Wu C, Shi L, Su H. Evolution of microstructures and intermetallic compounds at bonding interface in friction stir welding of dissimilar Al/Mg alloys with/without ultrasonic assistance. J Mater Sci Technol. 2023;139:31-46. https://doi.org/10.1016/j. matdes.2016. 03.055.
- 4. Rahimzadeh A, Heidarzadeh A, Mohammadzadeh A, Moeini G. Effect of friction stir welding heat input on the microstructure and tensile properties of Cu–Zn alloy containing disordered β phase. J Mater Res Technol. 2020;9:11154-61.
- 5. Ning J, Gao W, Gu X, Zhang H, Guan W, Li W, et al. Precipitation behavior and corrosion properties of friction stir welded AA5083 Al Mg alloy after sensitization. Mater Charact. 2023. https://doi.org/10.1016/j.match ar.2023.112782.
- 6. Muhammad NA, Geng P, Wu C, Ma N. Unravelling the ultrasonic effect on residual stress and microstructure in dissimilar ultrasonic-assisted friction stir welding of Al/Mg alloys. Int J Mach Tools Manuf. 2023.
- 7. Jalili N, Basirat Tabrizi H, Hosseini MM. Experimental and numerical study of simultaneous cooling with CO2 gas during friction stir welding of Al-5052. J Mater Process Technol. 2016;237:243-53. https://doi.org/10.1016/j.jmatp rotec.2016.06.019.
- 8. Zhao Y, Wu AP, Ren JL, Sato YS, Kokawa H, Miyake M, et al. Temperature and force response characteristics of friction stir welding on Invar 36 alloy. Sci Technol Weld Join. 2013;18:232-8.
- 9. Zhu XK, Chao YJ. Numerical simulation of transient temperature and residual stresses in friction stir welding of 304L stainless steel. J Mater Process Technol. 2004;146:263-72. https://doi.org/10.1016/j.jmatp rotec.2003.10.025.
- 10. Chupradit S, Bokov DO, Suksatan W, Landowski M, Fydrych D, Abdullah ME, et al. Pin angle thermal effects on friction stir welding of AA5058 aluminum alloy: CFD simulation and experimental validation. Materials (Basel). 2021. https://doi.org/10.3390/ma14247565.
- 11. Fei X, Wu Z. Research of temperature and microstructure in friction stir welding of Q235 steel with laser-assisted heating. Results Phys. 2018;11:1048-51. https://doi.org/10.1016/j.rinp.2018.11.039.
- 12. Liechty BC, Webb BW. Modeling the frictional boundary condition in friction stir welding. Int J Mach Tools Manuf. 2008;48:1474-85. https://doi.org/10.016/j.ijmac.htools.2008.04.005.
- 13. Chen G, Feng Z, Zhu Y, Shi Q. An alternative frictional bound friction stir welding. J Mater Eng Perform. 2016;25:4016-23. https://doi.org/10.1007/s11665-016-2219-9.
- 14. Chen G, Ma Q, Zhang S, Wu J, Zhang G, Shi Q. Computational fluid dynamics simulation of friction stir welding: a comparative study on different frictional boundary conditions. J Mater Sci Technol. 2018;34:128-34. https://doi org/10.1016/j.jmst.2017.10. 015.
- 15. Zhao C, Liu X. An alternative pressure-dependent velocity boundary condition for modeling self-reacting friction stir welding. J Adv Manuf Technol. 2021;117:1601-13. https://doi.org/10.1007/s00170-021-07589-z.
- 16. Zhao Y, Han J, Domblesky JP, Yang Z, Li Z, Liu X. Investigation of void formation in friction stir welding of 7N01 aluminium alloy. J Manuf Process. 2019;37:139-49. https://doi.org/10.1016/j.jmapro.2018.11.019.
- 17. Chen J, Wang X, Shi L, Wu C, Liu H, Chen G. Numerical simulation of weld formation in friction stir welding based on non-uniform tool-work piece interaction: an effect of tool pin size. J Manuf Process. 2023;86:85-97. https://doi.org/10.1016/j.jmapro.2022.12.052.
- 18. Ajri A, Shin YC. Investigation on the effects of process parameters on defect formation in friction stir welded samples via predictive numerical modeling and experiments. J Manuf Sci Eng. 2017. https://doi.org/10.1115/1.4037240.
- 19. Mahto RP, Kumar R, Pal SK. Characterizations of weld defects, inter-metallic compounds and mechanical properties of friction stir lap welded dissimilar alloys. Mater Charact. 2020. https://doi.org/10.1016/j.match ar.2019.110115.
- 20. Kumar SS, Murugan N, Ramachandran KK. Effect of tool tilt angle on weld joint properties of friction stir welded AISI 316L stainless steel sheets. Measurement. 2020.
- 21. Reza-E-Rabby M, Tang W, Reynolds AP. Effects of thread interruptions on tool pins in friction stir welding of AA6061. Sci Technol Weld Join. 2017;23:114-24. https://doi.org/10.1080/13621718.2017.13413 63.
- 22. Zhong YB, Wu CS, Padhy GK. Effect of ultrasonic vibration on welding load, temperature and material flow in friction stir welding. J Mater Process Technol. 2017;239:273-83. https://doi.org/10.1016/j.jmatp rotec. 2016.08.025.
- 23. Liu XC, Wu CS. Material flow in ultrasonic vibration enhanced friction stir welding. J Mater Process Technol. 2015;225:32-44. https://doi.org/10.1016/j.jmatp rotec. 2015.05.020.
- 24. Labus Zlatanovic D, Pierre Bergmann J, Balos S, Hildebrand J, Bojanic-Sejat M, Goel S. Effect of surface oxide layers in solid-state welding of aluminium alloys-review. Sci Technol Weld Join. 2023;28:331-51. https://doi.org/10.1080/13621718.2023.21656 03.
- 25. Zhao W, Wu C, Su H. Numerical investigation of heat generation and plastic deformation in ultrasonic assisted friction stir welding. J Manuf Process. 2020;56:967-80. https://doi.org/10.1016/j.jmapro. 2020. 05. 047.
- 26. Shi L, Wu CS, Liu XC. Modeling the effects of ultrasonic vibration on friction stir welding. J Mater Process Technol. 2015;222:91-102. https:// doi.org/10.1016/j. jmatp.rotec. 2015. 03. 002.
- 27. Nandan R, Roy GG, Lienert TJ, DebRoy T. Numerical modelling of 3D plastic flow and heat transfer during friction stir welding of stainless steel. Sci Technol Weld Join. 2013;11:526-37. https://doi.org/10.1179/17432 9306x 107692.
- 28. Ou W, Guo G, Cui C, Zhang Y, Qian L. Heat transfer in aluminum-steel joint and weld tool during the friction stir welding: simulation and experimental validation. J Adv Manuf Technol. 2023;125:2211-24. https://doi.org/10.1007/s00170-023-10889-1.
- 29. Yang C, Dai Q, Shi Q, Wu C, Zhang H, Chen G. Flow-coupled thermo-mechanical analysis of frictional behaviors at the tool-workpiece interface during friction stir welding. J Manuf Process. 2022;79:394-404.
- 30. Liu X, Sun Z. Numerical simulation of vortex- friction stir welding based on internal friction between identical materials. Int J Heat Mass Transf. 2022. https://doi.org/10.1016/j.ijhea.tmass.transfer. 2021.122418.
- 31. Chen G, Li H, Wang G, Guo Z, Zhang S, Dai Q, et al. Effects of pin thread on the in-process material flow behavior during friction stir welding: a computational fluid dynamics study. Int J Mach Tools Manuf. 2018;124:12-21. https://doi.org.10.1016/j.ijmac htools. 2017. 09. 002.
- 32. Chen GQ, Shi QY, Fujiya Y, Horie T. Simulation of metal flow during friction stir welding based on the model of interactive force between tool and material. J Mater Eng Perform.2014;23:1321-8.
- 33. Sheppard T, Jackson A. Constitutive equations for use in prediction of flow stress during extrusion of aluminium alloys. Mater Sci Technol. 2013;13:203-9. https://doi.org/10.1179/mst. 1997.13.3.203.
- 34. Shi L, Wu CS, Gao S. Analysis of welding load reduction in ultrasonic vibration-enhanced friction stir welding. J Adv Manuf Technol. 2018;99:373-85. https://doi.org/10.1007/s00170- 018- 2472-1.
- 35. Gao S, Wu CS, Padhy GK, Shi L. Evaluation of local strain distribution in ultrasonic enhanced Al 6061-6 friction stir weld nugget by EBSD analysis. Mater Des. 2016;99:135-44. https://doi. org/10.1016/j. matdes. 2016. 03.055.
- 36. Shi L, Chen J, Yang C, Chen G, Wu C. Thermal-fluid-structure coupling analysis of void defect in friction stir welding. Int J Mech Sci. 2023;241: 107969. https://doi.org/10.1016/j. ijmec sci.2022. 107969.
- 37. Lei B, Shi Q, Yang L, Liu C, Pan J, Chen G. Evolution of interfacial contact during low pressure rotary friction welding: a finite element analysis. J Manuf Process. 2020;56:643-55. https://doi.org/10.1016/j.jmapro. 2020. 05. 034.
- 38. Chen G, Wang G, Shi Q, Zhao Y, Hao Y, Zhang S. Three-dimensional thermal-mechanical analysis of retractable pin tool friction stir welding process. J Manuf Process. 2019;41:1-9.
- 39. You J, Zhao Y, Dong C, Su Y. Improving the microstructure and mechanical properties of Al-Cu dissimilar joints by ultrasonic dynamic-stationary shoulder friction stir welding. J Mater Process Technol. 2023. https://doi.org/10.1016/j.jmatp rotec. 2022.117812.
- 40. Yang C, Wu C. Numerical simulation of ultrasonic vibration-enhanced friction stir welding process of dissimilar Al/Mg alloys. Int J Adv Manuf Technol. 2022;120:2277-89. https://doi.org/10.1007/s00170- 022-08927-5.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2a8079cb-b000-4530-990e-fd8090627552
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.