PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Abnormality Diagnosis in Mammograms by Transfer Learning Based on ResNet18

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Breast cancer is one of the common cancers threatening the health of women while the incident rate of it is quite low in men to contribute to a major killer of men. Early syndromes of breast cancer including micro-calcification, mass, and distortion in mammography images can be very helpful for radiologists to make diagnosis of the cancer at early stage, which means the cancer can be treated or even be cured timely and thus make early diagnosis important. To assist radiologists with diagnosis, we set up a computer-aided diagnosis system to make diagnosis decision of breast cancer in this paper. We acquired regions of interests in mammographic images from public database, and labeled regions containing micro-calcification or mass as abnormality while regions without such abnormalities as normality. By transferring the state-of-the-art networks into our quest, we found that ResNet18 performed best and achieved mean accuracy of 95.91%.
Słowa kluczowe
Wydawca
Rocznik
Strony
219--230
Opis fizyczny
Bibliogr. 32 poz., fot., rys., tab.
Twórcy
autor
  • Department of Informatics, University of Leicester, LE1 7RH, UK
  • School of Architecture, Building and Civil engineering, Loughborough University, LE11 3TU, UK
Bibliografia
  • [1] Common Cancer Types. Accessed Dec 28, 2018. URL https://www.cancer.gov/types/common-cancers.
  • [2] Breast cancer: prevention and control. Accessed Dec 28, 2018. URL https://www.who.int/cancer/detection/breastcancer/en/.
  • [3] Tang J, Rangayyan RM, Xu J, El Naqa I, Yang Y. Computer-aided detection and diagnosis of breast cancer with mammography: recent advances. IEEE Transactions on Information Technology in Biomedicine, 2009. 13(2):236-251. doi:10.1109/TITB.2008.2009441.
  • [4] Jalalian A, Mashohor SB, Mahmud HR, Saripan MIB, Ramli ARB, Karasfi B. Computer-aided detection/diagnosis of breast cancer in mammography and ultrasound: a review. Clinical imaging, 2013. 37(3):420-426. doi:org/10.1016/j.clinimag.2012.09.024.
  • [5] Li Y, Chen H, Cao L, Ma J. A survey of computer-aided detection of breast cancer with mammography. J. Health Med. Inform, 2016. 7(4). doi:10.4172/2157-7420.1000238.
  • [6] Zemmal N, Azizi N, Sellami M. CAD system for classification of mammographic abnormalities using transductive semi supervised learning algorithm and heterogeneous features. In: Programming and Systems (ISPS), 2015 12th International Symposium on. IEEE, 2015 pp. 1-9. doi:10.1109/ISPS.2015.7244993.
  • [7] Kallergi M. Computer aided diagnosis of mammographic microcalcification clusters, 2008. US Patent 7,430,308. doi:10.1118/1.1637972.
  • [8] Chan HP, Sahiner B, Lam KL, Petrick N, Helvie MA, Goodsitt MM, Adler DD. Computerized analysis of mammographic microcalcifications in morphological and texture feature spaces. Medical physics, 1998. 25(10):2007-2019. doi:10.1118/1.598389.
  • [9] Wang S, Rao RV, Chen P. Abnormal breast detection in mammogram images by feed-forward neural network trained by Jaya algorithm. Fundamenta Informaticae, 2017. 151(1-4):191-211. doi:10.3233/FI-2017-1487.
  • [10] Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. In: Advances in neural information processing systems. 2012 pp. 1097-1105. URL http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf.
  • [11] ImageNet classification challenge 2012. Accessed Dec 28, 2018. URL http://image-net.org/challenges/LSVRC/2012.
  • [12] Zeiler MD, Fergus R. Visualizing and understanding convolutional networks. In: European conference on computer vision. Springer, 2014 pp. 818-833. URL https://doi.org/10.1007/978-3-319-10590-1_53.
  • [13] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014. URL https://arxiv.org/pdf/1409.1556.pdf.
  • [14] Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2015 pp. 1-9. URL https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Szegedy_Going_Deeper_With_2015_CVPR_paper.pdf.
  • [15] He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016 pp. 770-778. URL http://openaccess.thecvf.com/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf.
  • [16] Pan SJ, Yang Q, et al. A survey on transfer learning. IEEE Transactions on knowledge and data engineering, 2010. 22(10):1345-1359. doi:10.1109/TKDE.2009.191.
  • [17] Raina R, Battle A, Lee H, Packer B, Ng AY. Self-taught learning: transfer learning from unlabeled data. In: Proceedings of the 24th international conference on Machine learning. ACM, 2007 pp. 759-766. doi:10.1145/1273496.1273592.
  • [18] Hoo-Chang S, Roth HR, Gao M, Lu L, Xu Z, Nogues I, Yao J, Mollura D, Summers RM. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE transactions on medical imaging, 2016. 35(5):1285. doi:10.1109/TMI.2016.2528162.
  • [19] Wang SH, Tang C. Multiple sclerosis identification by 14-layer convolutional neural network with batch normalization, dropout, and stochastic pooling. Frontiers in neuroscience, 2018. 12. doi:10.3389/fnins.2018.00818.
  • [20] Lu S, Qiu X. A pathological brain detection system based on extreme learning machine optimized by bat algorithm. CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders), 2017. 16(1):23-29. URL https://www.ingentaconnect.com/contentone/ben/cnsnddt/2017/00000016/00000001/art00008.
  • [21] Zhang YD, Jiang Y. Exploring a smart pathological brain detection method on pseudo Zernike moment. Multimedia Tools and Applications, 2018. 77(17):22589-22604. URL https://link.springer.com/article/10.1007/s11042-017-4703-0.
  • [22] Hong J, Wang SH, Cheng H, Liu J. Classification of cerebral microbleeds based on fully-optimized convolutional neural network. Multimedia Tools and Applications, 2018. pp. 1-19. URL https://link.springer.com/article/10.1007/s11042-018-6862-z.
  • [23] Wang SH, Hong J, Yang M. Sensorineural hearing loss identification via nine-layer convolutional neural network with batch normalization and dropout. Multimedia Tools and Applications, 2018. pp. 1-16. doi:10.1007/s11042-018-6798-3.
  • [24] Wu L. Improved image filter based on SPCNN. Science in China Series F-Information Sciences, 2008. 51(12):2115-2125. URL https://link.springer.com/content/pdf/10.1007/s11432-008-0124-z.pdf.
  • [25] Zhao G. Smart pathological brain detection by synthetic minority oversampling technique, extreme learning machine, and Jaya algorithm. Multimedia Tools and Applications, 2008. 77(17):22629-22648. URL https://link.springer.com/article/10.1007/s11042-017-5023-0.
  • [26] Zhang YD, Pan C, Chen X, Wang F. Abnormal breast identification by nine-layer convolutional neural network with parametric rectified linear unit and rank-based stochastic pooling. Journal of Computational Science, 2018. 27:57-68. URL https://doi.org/10.1016/j.jocs.2018.05.005.
  • [27] Xi P, Shu C, Goubran R. Abnormality Detection in Mammography using Deep Convolutional Neural Networks. arXiv preprint arXiv:1803.01906, 2018. doi:10.1109/MeMeA.2018.8438639.
  • [28] Hang W, Liu Z, Hannun A. GlimpseNet: Attentional Methods for Full-Image Mammogram Diagnosis. URL http://cs231n.stanford.edu/reports/2017/pdfs/517.pdf.
  • [29] Yosinski J, Clune J, Bengio Y, Lipson H. How transferable are features in deep neural networks? In: Advances in neural information processing systems. 2014 pp. 3320-3328. URL http://papers.nips.cc/paper/5347-how-transferable-are-features-in-deep-neural-networks.pdf.
  • [30] Samala RK, Chan HP, Hadjiiski L, Helvie MA, Wei J, Cha K. Mass detection in digital breast tomosynthesis: Deep convolutional neural network with transfer learning from mammography. Medical physics, 2016. 43(12):6654-6666. URL http://dx.doi.org/10.1118/1.4967345.
  • [31] Huynh BQ, Li H, Giger ML. Digital mammographic tumor classification using transfer learning from deep convolutional neural networks. Journal of Medical Imaging, 2016. 3(3):034501. URL https://doi.org/10.1117/1.JMI.3.3.034501.
  • [32] Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M, et al. ImageNet large scale visual recognition challenge. International Journal of Computer Vision, 2015. 115(3):211-252. URL https://link.springer.com/article/10.1007/s11263-015-0816-y.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2a7d983f-6a9a-43c7-9edb-4798476df98f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.