PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Transfer function for a controllable pitch propeller with added water mass

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The relevance of this study lies in the fact that it presents a mathematical model of the dynamics of the propulsion system of a ship that takes into consideration the mass of water added to it. The influence of this phenomenon on the resonant frequencies of the propeller shaft is examined, and a transfer function for a controllable-pitch propeller is obtained for various operating modes. The purpose of the study is to improve the calculation of the dynamic operating modes of a controllable-pitch propeller by examining the features of a visual models. The VisSim software package is used in the study. A visual model is developed that considers the influence of the rotational speed on the value of the rotational inertia attached to the variable-pitch screw of the mass of water, and a special transfer function is proposed. The study shows that a transfer function of this type has a loop enabling negative feedback. An analysis of the operation of the propeller shaft at its resonant frequency is conducted based on the application of frequency characteristics using the transfer functions obtained. We show that in the low-frequency region, a consideration of the added rotational inertia using the proposed transfer function leads to a significant difference compared to the result obtained with the existing calculation method.
Rocznik
Tom
Strony
74--80
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
  • Department of Ship Power Plants and Systems, Danube Institute of the National University „Odessa Maritime Academy”, Ukraine
autor
  • Department of Ship Power Plants and Systems, Danube Institute of the National University „Odessa Maritime Academy”, Ukraine
  • Department of Ship Power Plants and Systems, Danube Institute of the National University „Odessa Maritime Academy”, Ukraine
  • Department of Ship Power Plants and Systems, Danube Institute of the National University „Odessa Maritime Academy”, Ukraine
Bibliografia
  • 1. MacPherson, D.M., Puleo, V.R., Packard, M.B. 2007. Estimation of entrained water added mass properties for vibration analysis. https://cutt.ly/8GVZdOe.
  • 2. Faltinsen, O., Minsaas, K.J., Liapias, N., Skjørdal, S.O. 1981. Prediction of resistance and propulsion of a ship in a seaway. In: T. Inui (Ed.). Proceedings of 13th Symposium on Naval Hydrodynamics (pp. 1-19). Tokio: University of Trondheim.
  • 3. Król, P. 2021. Hydrodynamic state of art review: Rotor – stator marine propulsor systems design. Polish Maritime Research, 28(1), 72-82. https://doi.org/10.2478/ pomr-2021-0007.
  • 4. Koibakov, S.M., Umirkhanov, M.G. 2013. Model research of ice jams. World Applied Sciences Journal, 25(8), 11581160. https://doi.org/10.5829/idosi.wasj.2013.25.08.13382.
  • 5. Koibakov, S.M., Umirkhanov, M.G. 2013. Icebreaker unit. World Applied Sciences Journal, 25(8), 1251-1254. https:// doi.org/10.5829/idosi.wasj.2013.25.08.13423.
  • 6. Gayen, D., Chakraborty, D., Tiwari, R. 2017. Whirl frequencies and critical speeds of a rotor-bearing system with a cracked functionally graded shaft − finite element analysis. European Journal of Mechanics − A/Solids, 61, 47-58.
  • 7. Lou, B., Cui, H. 2021. Fluid–structure interaction vibration experiments and numerical verification of a real marine propeller. Polish Maritime Research, 28(3), 61-75. https:// doi.org/10.2478/pomr-2021-0034.
  • 8. Prohl, M.A. 1945. A general method for calculating critical speeds of flexible rotors. Journal of Applied Mechanics, 12(3), 142-148.
  • 9. Ostanin, V. 2022. Vadym Effects of repulsion and attraction between rotating cylinders in fluids. Scientific Herald of Uzhhorod University. Series “Physics”, (51), 39-47. https:// doi.org/10.54919/2415-8038.2022.51.39-47.
  • 10. Klendii, M., Logusch, I., Dragan, A., Tsvartazkii, I., Grabar, A. 2022. Justification and calculation of design and strength parameters of screw loaders. Machinery & Energetics, 13(4), 48-59. https://doi.org/10.31548/ machenergy.13(4).2022.48-59.
  • 11. Yoon, M. 2016. A Transfer Function Model of Thrust Dynamics for Multi-Rotor Helicopters. International Journal of Engineering Research & Technology, 5(1), 15-18.
  • 12. Boletis, E., de Lange, R., Bulten, N. 2015. Impact of propulsion system integration and controls on the vessel DP and maneuvering capability. IFAC-PapersOnLine, 48(16), 160-165.
  • 13. Xiros, N.I. 2004. PID marine engine speed regulation under full load conditions for sensitivity H∞-norm specifications against propeller disturbance. Journal of Marine Engineering & Technology, 3(2), 3-11.
  • 14. Smailova, G., Yussupova, S., Uderbaeva, A., Kurmangaliyeva, L., Balbayev, G., Zhauyt, A. 2018. Calculation and construction of the tolling roller table. Vibroengineering Procedia, 18, 14-19. https://doi.org/10.21595/vp.2018.19908.
  • 15. Koushan, K. 2006. Dynamics of ventilated propeller blade loading on thrusters. In: World Maritime Technology Conference (pp. 18-21). London: Macmillan Education.
  • 16. Senjanović, I., Hadžić, N., Murawski, L., Vladimir, N. 2019. Analytical procedures for torsional vibration analysis of ship power transmission system. Engineering Structures, 178, 227-244.
  • 17. Leschev, V.A. 2018. Marine diesel ACS with external feedback speed sensor. Modern Engineering and Innovative Technologies, 5, 11-17.
  • 18. Kukhar, V., Vasylevskyi, O., Khliestova, O., Berestovoi, I., Balalayeva, E. 2022. Hydraulic Press Open Die Forging of 21CrMoV5-7 Steel CCM Roller with Flat Upper and Concave Semi-round Lower Cogging Dies. Lecture Notes in Mechanical Engineering, 489-498. https://doi. org/10.1007/978-3-030-91327-4_48.
  • 19. Aghbalyan, S., Simonyan, V. 2022. Study of hardening and structure of maraging powder steel grade PS-H18K9M5TR (18%Ni+9%Co+5%Mo+1%Ti+1%Re+66%Fe). Scientific Herald of Uzhhorod University. Series “Physics”, (52), 46-55. https://doi.org/10.54919/2415-8038.2022.52.46-55.
  • 20. Nussupbek, Z.T., Bekenov, T.N., Sattinova, Z.K., Beisenbi, M.A., Tassybekov, Z.T. 2023. Substantiation of methods for calculation of traction forces redistribution indicators on modular front and rear wheels of the vehicle (4Х4). Transportation Engineering, 13, 100193. https://doi. org/10.1016/j.treng.2023.100193.
  • 21. Gierusz, W. 2016. Modelling the dynamics of ships with different propulsion for control purpose. Polish Maritime Research, 89(23), 31-36.
  • 22. Guimarães, D. A. 2009. Digital Transmission: A SimulationAided Introduction with VisSim/Comm. New York: Springer Verlag. https://doi.org/10.1007/978-3-642-01359-1.
  • 23. Leshchev, V.A., Naydyonov, А.I. 2021. Dynamic Method for Determining Resonant Frequencies of Torsional Vibrations of a Ship’s Propeller Shaft. A Scientific Look into the Future, 1(21), 15-26.
  • 24. Gorb, S., Popovskii, A., Budurov, M. 2023. Adjustment of speed governor for marine diesel generator engine. International Journal of GEOMATE, 25(109), 125-132. https://doi.org/10.21660/2023.109.m2312.
  • 25. Califano, A. 2010. Dynamic loads on marine propellers due to intermittent ventilation. Trondheim: NTNU.
  • 26. Kaplun, V., Chuenko, R., Makarevych, S. 2022. Investigation of energy parameters of a compensated asynchronous motor in the mode of repeated short-term starts. Machinery & Energetics, 13(3), 25-33. https://doi.org/10.31548/ machenergy.13(3).2022.25-33.
  • 27. Ghaemi, M.H., Zeraatgar, H. 2022. Impact of propeller emergence on hull, propeller, engine, and fuel consumption performance in regular head waves. Polish Maritime Research, 29(4), 56-76. https://doi.org/10.2478/ pomr-2022-0044.
  • 28. Kluczyk, M., Grządziela, A., Batur, T. 2022. Design and operational diagnostics of marine propellers made of polymer materials. Polish Maritime Research, 29(4), 115122. https://doi.org/10.2478/pomr-2022-0049.
  • 29. Xiang, L., Yang, S.X., Gan, C.B. 2012. Torsional vibration of a shafting system under electrical disturbances. Shock and Vibration, 19, 1-11.
  • 30. Quang, P.K., Hung, P.V., Cong, N.C., Tung, T.X. 2022. Effects of rudder and blade pitch on hydrodynamic performance of marine propeller using CFD. Polish Maritime Research, 29(2), 55-63. https://doi.org/10.2478/pomr-2022-0017.
  • 31. Fleischer, K.P. 1973. Untersuchungen über das Zusammenwirken von Schiff und Propeller bei teilgetauchten Propellern. Forschungszentrum des Deutschen Schiffbaus Bericht, 130(73), 291-308. [in German].
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2a7d95d3-bf8c-4110-88ca-bfec5289aac9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.