PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A simplified model of concrete for analysis of reinforced concrete elements

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Uproszczony model betonu do analizy elementów żelbetowych
Języki publikacji
EN
Abstrakty
EN
The elastic-plastic material model for concrete developed by considering the stress softening and degradation of the deformation modulus for the concrete was presented in the paper. A reduced plane stress state for the compression/tension range with shear was assumed. During the loading process, the model describes four phases of concrete behaviour during compression: achieving the elastic compressive concrete strength, perfectly plastic flow, material softening, and failure/crushing. The model describes three tension phases: achieving elastic tensile concrete strength, material softening, and failure/cracking. The failure phases were interpreted as achieving a stressless state in the material softening process. The proposed model is simplified and very effective to describe the most important properties of nonlinear behaviour of material. The model of concrete can be used for analysis of failure mechanism of reinforced concrete structural elements.
PL
W pracy przedstawiono model betonu jako materiału sprężysto-plastycznego z uwzględnieniem osłabienia i degradacji modułu odkształcenia. Przyjęto założenie zredukowanego, płaskiego stanu naprężenia dla ściskania/rozciągania i ścinania. Model betonu pozwala na opis sprężystego osiągnięcia początkowej wytrzymałości, idealnego płynięcia plastycznego i osłabienia materiałowego przy ściskaniu oraz sprężystego osiągnięcia wytrzymałości i osłabienia materiałowego przy rozciąganiu. Procesy zniszczenia, tj. zarysowania i zmiażdżenia, modelowane są jako stany beznaprężeniowe osiągane w procesie osłabienia materiałowego, odpowiednio przy rozciąganiu i ściskaniu. Proponowany model odkształcenia betonu umożliwia efektywny opis najistotniejszych właściwości nieliniowego zachowania materiału i może być stosowany do analizy mechanizmu zniszczenia prętowych, żelbetowych elementów konstrukcyjnych.
Rocznik
Strony
55--68
Opis fizyczny
Bibliogr. 26 poz., rys., wykr.
Twórcy
  • Military University of Technology, Faculty of Civil Engineering and Geodesy, 00-908 Warsaw, 2 Kaliskiego Str., Poland
autor
  • Military University of Technology, Faculty of Civil Engineering and Geodesy, 00-908 Warsaw, 2 Kaliskiego Str., Poland
Bibliografia
  • [1] Bąk G., Stolarski A., Nonlinear analysis of reinforced concrete beams under impulsive load; Part I and II. The Polish Academy of Sciences, Institute of Fundamental Technological Research, Engineering Transactions, vol. 36, no. 3, Warsaw, Poland, 1988, 501-517, 519-539 (in Polish).
  • [2] Cichorski W., Stolarski A., Analysis of inelastic behaviour of reinforced concrete deep beams under static and dynamic load, Concrete Constructions. Theory and Experimental Studies, Polish Academy of Sciences, Wroclaw University of Technology Publishers, Edited by J. Gronostajski & M. Kmiński, Wroclaw, 1999, 31-38.
  • [3] Cicekli U., Voyiadjis G.Z. Abu Al-Rub R.K., A plasticity and anisotropic damage model for plain concrete, International Journal of Plasticity, no. 23, 2007, 1874-1900.
  • [4] Cińcio A., Wawrzynek A., Plasticity-damage concrete model in numerical simulations of structures subjected to cyclic loads, Scientific Papers of Silesian University of Technology, Civil Engineering, 2003, 1-11 (in Polish).
  • [5] Collins M.P., Mitchell D., MacGregor J.G., Structural Design Considerations for High-Strength Concrete, Concrete International: Design and Construction, vol. 15, no. 5, May 1993, 27-34.
  • [6] Feenstra P.H., de Borst R., A composite plasticity model for concrete, International Journal of Solids and Structures, vol. 33, no. 5, 1996, 707-730.
  • [7] Grassl P., Jirásek M., Damage-plastic model for concrete failure, International Journal of Solids and Structures, no. 43, 2006, 7166-7196.
  • [8] Hansen E., Willam K., Carol I., A two-surface anisotropic damage/plasticity model for plain concrete, In Fracture Mechanics of Concrete Materials, ed. by R. de Borst, A.A. Balkema, Rotterdam, 2001, 549-556.
  • [9] Kamal T.B., Yazdani S., Combined damage and plasticity approach for modelling brittle materials with application to concrete, International Journal of Civil and Structural Engineering, vol. 3, no. 3, 2013, 513-523.
  • [10] Kmiecik P., Kamiński M., Modelling of reinforced concrete structures and composite structures with concrete strength degradation taken into consideration, Archives of Civil and Mechanical Engineering, vol. 11, no. 3, 2011, 623-636.
  • [11] Krätzig W.B., Pölling R., An elasto-plastic damage model for reinforced concrete with minimum number of material parameters, Computers & Structures, no. 82, 2004, 1201-1215.
  • [12] Majewski S., The mechanics of structural concrete in terms of elasto-plasticity, Publishing House of Silesian University of Technology, Gliwice, 2003 (in Polish).
  • [13] Mander J., Priestley M., Park R., Theoretical Stress-Strain Model for Confined Concrete, Journal of Structural Engineering, vol. 114, no. 8, 2008, 1804-1826.
  • [14] Marzec I., Tejchman J., Enhanced coupled elasto-plastic-damage models to describe concrete behaviour in cyclic laboratory tests: comparison and improvement, Arch. Mech., 64, 3, Warsaw, 2012, 227-259.
  • [15] Pamin J., Gradient-enhanced continuum models: formulation, discretization and applications, Monography of Cracow University of Technology, Civil Engineering, no. 301, Cracow, 2004.
  • [16] Pamin J., de Borst R., Stiffness degradation in gradient-dependent coupled damage-plasticity, Archives of Mechanics, vol. 51, no. 3-4, 1999, 419-446.
  • [17] Smarzewski P., Modelling of static behavior of inelastic reinforced high-strength concrete beams, Monographs, Lublin University of Technology, Lublin, 2011.
  • [18] Smarzewski P., Stolarski A., Modelling of behaviour of inelastic reinforced concrete beam, Biuletyn WAT/Bulletin of the Military University of Technology, vol. 56, no. 2, 2007, 147-166.
  • [19] Stolarski A., Dynamical model of reinforced concrete bar systems, Military University of Technology Press, no. 153, Warsaw, 1989 (in Polish).
  • [20] Stolarski A., The model of dynamic deformation of concrete, Archives of Civil Engineering, 37, 3-4, 1991, 405-447 (in Polish).
  • [21] Stolarski A., Cichorski W., Modeling of the static and dynamic behavior of inelastic reinforced concrete deep beams, Polish Academy of Sciences, Committee of Civil Engineering, Institute of Fundamental Technological Research, Studies in Engineering, no. 51, Warsaw, 2002 (in Polish).
  • [22] Szcześniak A., Stolarski A., Effort analysis of reinforced concrete columns using dynamic relaxation method, Biuletyn WAT/Bulletin of the Military University of Technology, vol. 2, Warsaw, 2014, 155-170 (in Polish).
  • [23] Szcześniak A., Stolarski A., Analysis of critical damping in dynamic relaxation method for reinforced concrete structural elements, Mathematical and Numerical Approaches, 13th International Conference Dynamical Systems — Theory and Applications, December 7-10, 2015, Lodz, 501-512.
  • [24] Szcześniak A., Stolarski A., Numerical analysis of failure mechanism of eccentrically compressed reinforced concrete columns, Insights and Innovations in Structural Engineering, Mechanics and Computation: Proceedings of the Sixth International Conference on Structural Engineering, Mechanics and Computation, Cape Town, South Africa, 5-7 September 2016.
  • [25] Wojewódzki W., Jemioło S., Lewiński P.M., Szwed A., On constitutive relations modeling the mechanical properties of concrete, Publishing House of Warsaw University of Technology, Warsaw, 1995 (in Polish).
  • [26] Eurocode 2, EN 1992-1-1, Design of concrete structures, Part 1-1: General rules and rules for buildings.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2a7c7158-cf64-421e-842b-e34569b6a27e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.