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Abstract. This paper is concerned with the existence results of mild solutions to the non-
local problem of fractional semilinear integro-differential evolution equations. New existence
theorems are obtained by means of the fixed point theorem for condensing maps. The results
extend and improve some related results in this direction.

Keywords: fractional evolution equation, mild solution, nonlocal condition, C0-semigroup,
condensing maps, measure of noncompactness.

Mathematics Subject Classification: 34A12, 35F25, 35R11.

1. INTRODUCTION

Fractional calculus has been a mathematical topic more than 300 years. Indeed, the
concept of the non-integer derivative and integral, as a generalization of the tradi-
tional integer order differential and integer calculus, was mentioned in 1695 by Leibniz
and L’Hospital, but the first definition of the fractional derivative and integral was
introduced at the end of nineteenth century by Liouville and Riemann. The most
important advantage of fractional derivatives compared with integer derivatives is
that it describes the property of memory and heredity of various materials and pro-
cesses. In recent years, fractional differential calculus has attracted many physicists,
mathematicians and engineers. Notable contributions have been made to both the
theory and applications of fractional equations. It has been found that the differential
equations involving fractional derivatives in time are more realistic when it comes to
describing many phenomena in practical cases than those of integer order in time. For
instance, the fractional calculus concepts have been used in the modeling of neurons
[23] and viscoelastic materials [27]. Other examples from fractional order dynamics
can be found in [1, 9, 12,20,25,26] and the references therein.
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In this paper, we use the fixed point theorem for condensing maps to discuss
the existence of mild solutions for nonlocal problems of fractional integro-differential
evolution equations in a Banach space E{

Dqu(t) +Au(t) = f(t, u(t), Gu(t)), t ∈ J,
u(0) + g(u) = u0,

(1.1)

whereDq is the Caputo fractional derivative of order q; 0 < q < 1, A : D(A) ⊂ E → E
is a closed linear operator, −A generates an equicontinuous and uniformly bounded
C0-semigroup T (t) (t ≥ 0) in E, J = [0, a], a > 0 is a constant, the term Gu(t) which
may be interpreted as a control on the system is defined by

Gu(t) :=
t∫

0

K(t, s)u(s)ds,

where K ∈ C(D,R+) (the set of all positive continuous functions on D := {(t, s) ∈
R2 : 0 ≤ s ≤ t}), f : J × E × E → E and g : C(J,E) → E are given functions
satisfying some assumptions, and u0 is an element of the Banach space E.

The study of abstract nonlocal Cauchy problems was initiated by Byszewski and
Lakshmikantham [8]. Since it is demonstrated that the nonlocal problems have are
better in applications than the traditional Cauchy problems, differential equations
with nonlocal conditions were studied by many authors and some basic results on
nonlocal problems have been obtained, see [2,3,6–8,10,13,17,21,22,29,31,32] and the
references therein.

To the best of the author’s knowledge, no results exist for the fractional
integro-differential evolution equation nonlocal problem (1.1) under noncompactness
conditions. For some recent and deeper results on fractional differential equations un-
der noncompactness conditions, see Bechohra et al. [5] and Fang and N’Guérékata [18].

We conclude this section by summarizing the contents of this paper. In Section 2,
we recall briefly some basic definitions, lemmas and preliminary facts which are used
throughout this article. The existence theorems of mild solutions for the fractional
integro-differential evolution equation nonlocal problem (1.1) and their proofs are
arranged in Section 3.

2. PRELIMINARIES

In this section, we review some notation, definitions and preliminary facts which are
used throughout this paper.

Let E be a Banach space with the norm ‖·‖. we denote by C(J,E) the Banach space
of all continuous E-value functions on interval J with the norm ‖u‖c = maxt∈J ‖u(t)‖.
Let Lp(J,E) (1 ≤ p < +∞) be the Banach space of all E-value Bochner inte-
grable functions defined on J with the norm ‖u‖Lp(J,E) = (

∫ 1
0 ‖u(t)‖pdt)

1
p . We set
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Br = {u ∈ C(J,E) | ‖u‖c < r} (r > 0 is a constant), Br = {u ∈ C(J,E) | ‖u‖c ≤ r}
(r > 0 is a constant), and let

G∗ = sup
t∈J

t∫
0

K(t, s)ds <∞.

Definition 2.1 ([20]). The fractional integral of order q > 0 with the lower limit 0
for a function f ∈ L1(R+) is defined as

Iqf(t) = 1
Γ(q)

t∫
0

(t− s)q−1f(s)ds, (2.1)

where Γ(·) is the gamma function.

Definition 2.2 ([20]). The Caputo fractional derivative of order q > 0 with the lower
limit 0 for a function f is defined as

Dqf(t) = 1
Γ(n− q)

t∫
0

(t− s)n−q−1f (n)(s)ds, t > 0, n− 1 < q < n, (2.2)

where the function f(t) has absolutely continuous derivatives up to order n− 1.

If f is an abstract function with values in E, then the integrals and derivatives
appeared in Definitions 2.1 and 2.2 are taken in Bochner’s sense.

For u ∈ E, define two operators T (t) (t ≥ 0) and S (t) (t ≥ 0) by

T (t)u =
∞∫

0

ζq(θ)T (tqθ)udθ, S (t)u = q

∞∫
0

θζq(θ)T (tqθ)udθ, (2.3)

where
ζq(θ) = 1

q
θ−1−(1/q)ρq(θ−1/q), (2.4)

ρq(θ) = 1
π

∞∑
n=0

(−1)n−1θ−qn−1 Γ(nq + 1)
n! sin(nπq), θ ∈ (0,+∞),

ζq(θ) is a probability density function on (0,+∞) satisfying

ζq(θ) ≥ 0,
∞∫

0

ζq(θ)dθ = 1,
∞∫

0

θζq(θ)dθ = 1
Γ(1 + q) , θ ∈ (0,+∞).

Let M = supt∈[0,+∞) ‖T (t)‖L (E), where L (E) stands for the Banach space of all
linear and bounded operators in E. A C0-semigroup T (t) (t ≥ 0) is called equicontinu-
ous if the operator T (t) is continuous on (0,+∞) by the operator norm. The following
lemma follows from the results in [15,16,30].
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Lemma 2.3. The operators T (t) (t ≥ 0) and S (t) (t ≥ 0) have the following
properties:
(1) for any fixed t ≥ 0, T (t)(t ≥ 0) and S (t)(t ≥ 0) are linear and bounded operators,

i.e., for all u ∈ E,

‖T (t)u‖ ≤M‖u‖, ‖S u‖ ≤ M

Γ(q)‖u‖;

(2) for every u ∈ E, t → T (t)u and t → S (t)u are continuous functions from
[0,+∞) into E;

(3) if T (t)(t ≥ 0) is an equicontinuous semigroup, then T (t)(t ≥ 0) and S (t)(t ≥ 0)
are continuous in (0,+∞) by the operator norm, which means that for 0 < t′ <
t′′ ≤ a, we have

‖T (t′′)−T (t′)‖ → 0 and ‖S (t′′)−S (t′)‖ → 0 as t′′ → t′.

Lemma 2.4 (Bochner’s theorem). A measurable function H : J → E is Bochner’s
integrable if ‖H‖ is Lebesgue.

Lemma 2.4 is classical and it can be found in many books.
Definition 2.5. A function u ∈ C(J,E) is said to be a mild solution of the fractional
evolution equation nonlocal problem (1.1) if it satisfies

u(t) = Q1u(t) +Q2u(t), (2.5)

where Q1u(t) = T (t)(u0 − g(u)), Q2u(t) =
t∫

0
(t− s)q−1S (t− s)f(s, u(s), Gu(s))ds.

Next, we recall some properties of the measure of noncompactness that will be
used in the proof of our main results. Let α(·) denote the Kuratowski measure of
noncompactness of the bounded set. For the details of the definition and properties
of the measure of noncompactness, we refer to the monographs [4] and [14]. For any
B ⊂ C(J,E) and t ∈ J , set B(t) = {u(t) : u ∈ B} ⊂ E. If B is bounded in C(J,E),
then B(t) is bounded in E and α(B(t)) ≤ α(B).
Lemma 2.6 ([11]). Let E be a Banach space, D ⊂ E be bounded. Then there exists
a countable set D0 ⊂ D such that

α(D) ≤ 2α(D0).

Lemma 2.7 ([4]). Let E be a Banach space, D ⊂ C(J,E) be bounded and equicon-
tinuous. Then α(D(t)) is continuous on J , and

α(D) = max
t∈J

α(D(t)) = α(D(J)).

Lemma 2.8 ([19]). Let E be a Banach space, D = {un} ⊂ C(J,E) be a bounded and
countable set. Then α(D(t)) is a Lebesgue integral on J , and

α
({∫

J

un(t)dt : n ∈ N
})
≤ 2

∫
J

α(D(t))dt.
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Lemma 2.9 ([14]). Let E be a Banach space, D ⊂ E be a bounded closed and convex
set in E, Q : D → D be condensing which means that α(Q(D)) < α(D). Then Q has
a fixed point in D.
Lemma 2.10 ([14]). Let E be a Banach space, Ω be a bounded open subset of E and
θ ∈ Ω. Suppose that Q : Ω→ E is condensing and assume that

u 6= λQ(u) for u ∈ ∂Ω and λ ∈ (0, 1),

hold. Then Q has a fixed point in Ω.

3. MAIN RESULTS

Theorem 3.1. Let E be a Banach space, A : D(A) ⊂ E → E be a closed lin-
ear operator, −A generates an equicontinuous and uniformly bounded C0-semigroup
T (t)(t ≥ 0) in E, f : J × E × E → E, g : C(J,E) → E. Suppose that the following
conditions hold:
(H1) for each t ∈ J , the function f(t, ·, ·) : E × E → E is continuous and for each

(x, y) ∈ E × E, the function f(·, x, y) : J → E is Lebesgue measurable;
(H2) there exist a constant q1 ∈ (0, q) and a positive function m ∈ L

1
q1 (J,R) such

that
‖f(t, u, v)‖ ≤ m(t) for u, v ∈ E and t ∈ J ;

(H3) g : C(J,E) → E is continuous and there exist constants K > 0 such that for
any R > 0

‖g(u)− g(v)‖ ≤ K‖u− v‖c for all u, v ∈ BR;
(H4) there exist constants L1, L2 > 0 such that

α(f(t,D1, D2)) ≤ L1α(D1) + L2α(D2) for all t ∈ J and D1, D2 ∈ E.

Then the fractional integro-differential evolution equation nonlocal problem (1.1) has
at least one mild solution in C(J,E) provided that

2M
(
K + 2(L1 +G∗L2)aq

Γ(q + 1)

)
< 1. (3.1)

Proof. For any positive constant R and u ∈ BR, since u(t) and Gu(t) are continuous
in t, f(t, u(t), Gu(t)) is a measurable function on J according to condition (H1). Let

q2 = q − 1
1− q1

∈ (−1, 0), M1 = ‖m‖
L

1
q1 (J,R)

. (3.2)

By using Hölder’s inequality and condition (H2), we obtain
t∫

0

‖(t− s)q−1f(s, u(s), Gu(s))‖ds ≤
( t∫

0

(t− s)
q−1

1−q1 ds
)1−q1

‖m‖
L

1
q1 (J,R)

≤ M1

(1 + q2)1−q1
a(1+q2)(1−q1).
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By Lemma 2.3 (1), we have

t∫
0

‖(t− s)q−1S (t− s)f(s, u(s), Gu(s))‖ds ≤ M1M

Γ(q)(1 + q2)1−q1
a(1+q2)(1−q1). (3.3)

Thus, ‖(t−s)q−1S (t−s)f(s, u(s), Gu(s))‖ is Lebesgue integrable with respect to s ∈
[0, t] for all t ∈ J . From Lemma 2.4 it follows that (t− s)q−1S (t− s)f(s, u(s), Gu(s))
is Bochner’s integrable with respect to t ∈ J .

We now consider the operator Q : C(J,E)→ C(J,E) defined by (2.5). It is easy to
see that the fixed point of Q is the mild solution of the fractional integro-differential
evolution equation nonlocal problem (1.1). Therefore, the existence of a mild solution
of (1.1) is equivalent to determining a positive constant R0 such that Q has at least
one fixed point on BR0 .

Indeed, by choosing

R0 = M(‖u0‖+ ‖g(θ)‖)
1−MK

+ M1Ma(1+q2)(1−q1)

(1−MK)Γ(q)(1 + q2)1−q1
,

we can prove that Q has at least one fixed point on BR0 . Our proof will be divided
into three steps.
Step 1. The operator Q : BR0 → BR0 is continuous.

For any u ∈ BR0 and t ∈ J , by using (3.3) we have

‖Qu(t)‖ ≤ ‖T (t)(u0 − g(u))‖+
t∫

0

‖t− s)α−1S (t− s)f(s, u(s), Gu(s))‖ds

≤M(‖u0‖+K‖u− θ‖c + ‖g(θ)‖) + M1M

Γ(q)(1 + q2)1−q1
a(1+q2)(1−q1)

≤M(‖u0‖+KR0 + ‖g(θ)‖) + M1M

Γ(q)(1 + q2)1−q1
a(1+q2)(1−q1)

= R0.

Hence, ‖Qu‖c ≤ R0 for every u ∈ BR0 .
For all un, u ⊂ BR0 , n = 1, 2, . . . with lim

n→+∞
‖un − u‖c = 0, we get that

lim
n→+∞

un(t) = u(t), for all t ∈ J.

Thus, by condition (H1) we have that

lim
n→+∞

f(t, un(t), Gun(t)) = f(t, u(t), Gu(t)) for all t ∈ J.

So, we can conclude that

sup
t∈J
‖f(t, un(t), Gun(t))− f(t, u(t), Gu(t))‖ → 0 as n→ +∞.
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On the other hand, for t ∈ J

‖Qun(t)−Qu(t)‖
≤M‖g(un)− g(u)‖

+
t∫

0

‖(t− s)q−1S (t− s)[f(s, un(s), Gun(s))− f(s, u(s), Gu(s))]‖ds

≤MK‖un − u‖c + Maq

Γ(1 + q) sup
t∈J
‖f(t, un(t), Gun(t))− f(t, u(t), Gu(t))‖,

which implies

‖Qun −Qu‖c ≤MK‖un − u‖c

+ Maq

Γ(1 + q) sup
t∈J
‖f(t, un(t), Gun(t))− f(t, u(t), Gu(t))‖.

Hence,
‖Qun −Qu‖c → 0 as n→ +∞.

This means that the operator Q : BR0 → BR0 is continuous.
Step 2. The operator Q : BR0 → BR0 is equicontinuous, which means that
‖Qu(t2)−Qu(t1)‖ tends to 0 as t2 → t1 for any u ∈ BR0 .

For 0 ≤ t1 < t2 ≤ a, we can get that

‖(Qu)(t2)− (Qu)(t1)‖
≤ ‖T (t2)(u0 − g(u))−T (t1)(u0 − g(u))‖

+
∥∥∥ t2∫

0

(t2 − s)q−1S (t2 − s)f(s, u(s), Gu(s))ds

−
t1∫

0

(t1 − s)q−1S (t1 − s)f(s, u(s), Gu(s))ds
∥∥∥

≤ ‖T (t2)(u0 − g(u))−T (t1)(u0 − g(u))‖

+
∥∥∥ t2∫
t1

(t2 − s)q−1S (t2 − s)f(s, u(s), Gu(s))ds
∥∥∥

+
∥∥∥ t1∫

0

[(t2 − s)q−1 − (t1 − s)q−1]S (t2 − s)f(s, u(s), Gu(s))ds
∥∥∥

+
∥∥∥ t1∫

0

(t1 − s)q−1[S (t2 − s)−S (t1 − s)]f(s, u(s), Gu(s))ds
∥∥∥

= I1 + I2 + I3 + I4,
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where

I1 = ‖T (t2)(u0 − g(u))−T (t1)(u0 − g(u))‖,

I2 =
∥∥∥ t2∫
t1

(t2 − s)q−1S (t2 − s)f(s, u(s), Gu(s))ds
∥∥∥,

I3 =
∥∥∥ t1∫

0

[(t2 − s)q−1 − (t1 − s)q−1]S (t2 − s)f(s, u(s), Gu(s))ds
∥∥∥,

I4 =
∥∥∥ t1∫

0

(t1 − s)q−1[S (t2 − s)−S (t1 − s)]f(s, u(s), Gu(s))ds
∥∥∥.

We now only need to check that Ii tends to 0 independently of u ∈ BR0 when t2 → t1,
i = 1, 2, 3, 4. For I1, by Lemma 2.3 (3), we have that

I1 ≤ ‖(T (t2)−T (t1))u0‖+ ‖(T (t2)−T (t1))g(u)‖ → 0 as t2 → t1.

For I2,

I2 ≤
M1M

Γ(q)(1 + q2)1−q1
(t2 − t1)(1+q2)(1−q1) → 0 as t2 → t1.

For I3, by Lemma 2.3 (1), we have that

I3 ≤
M

Γ(q)

( t1∫
0

[
(t1 − s)q−1 − (t2 − s)q−1] 1

1−q1 ds
)1−q1

‖m‖
L

1
q1 (J,E)

≤ M1M

Γ(q)

( t1∫
0

((t1 − s)q2 − (t2 − s)q2)ds
)1−q1

= M1M

Γ(q)(1 + q2)1−q1
(t1+q2

1 − t1+q2
2 + (t2 − t1)1+q2)1−q1

≤ M1M

Γ(q)(1 + q2)1−q1
(t2 − t1)(1+q2)(1−q1) → 0 as t2 → t1.
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For t1 = 0, 0 < t2 ≤ a, it is easy to see that I4 = 0. For t1 > 0 and ε > 0 small
enough, by Lemma 2.3 (3), we know that

I4 ≤
∥∥∥ t1−ε∫

0

(t1 − s)q−1[S (t2 − s)−S (t1 − s)]f(s, u(s), Gu(s))ds
∥∥∥

+
∥∥∥ t1∫
t1−ε

(t1 − s)q−1[S (t2 − s)−S (t1 − s)]f(s, u(s), Gu(s))ds
∥∥∥

≤
t1−ε∫
0

‖(t1 − s)q−1f(s, u(s), Gu(s))‖ds sup
s∈[0,t1−ε]

‖S (t2 − s)−S (t1 − s)‖L (E)

+ 2M
Γ(q)

t1∫
t1−ε

‖(t1 − s)q−1f(s, u(s), Gu(s))‖ds

≤ M1(t(1+q2) − ε(1+q2))1−q1

(1 + q2)1−q1
sup

s∈[0,t1−ε]
‖S (t2 − s)−S (t1 − s)‖L (E)

+ 2M1M

Γ(q)(1 + q2)1−q1
ε(1+q2)(1−q1) → 0 as t2 → t1.

As a result, ‖Qu(t2) − Qu(t1)‖ tends to 0 independently of u ∈ BR0 as t2 → t1.
Therefore, Q : BR0 → BR0 is equicontinuous.
Step 3. Q : BR0 → BR0 is a condensing operator.

For all B ⊂ BR0 , Q(B) is bounded and equicontinuous. Hence, by Lemma 2.6,
there exists a countable set B1 = {un}∞n=1 ⊂ B such that

α(Q(B)) ≤ 2α(Q(B1)). (3.4)

Since Q(B1) ⊂ Q(BR0) is equicontinuous, Lemma 2.7 implies

α(Q(B1)) = max
t∈J

α(Q(B1)(t)). (3.5)

Moreover, Q1 is Lipschitz continuous with constant MK by condition (H3). Indeed,
for all x, y ∈ B1, we know

‖Q1x−Q1y‖ = sup
t∈J
‖T (t)(u0 − g(x))−T (t)(u0 − g(y))‖

≤M‖g(x)− g(y)‖ ≤MK‖x− y‖c,

from this inequality and the definition of the measure of noncompactness, it follows
that

α(Q1(B1)) ≤MKα(B1). (3.6)
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For t ∈ J , according to Lemma 2.3 (1), Lemma 2.8, and the conditions (H3) and
(H4), we have

α(Q(B1)(t)) = α(Q1(B1)(t)) + α(Q2(B1)(t))

≤ α(Q(B1) + α
({ t∫

0

(t− s)q−1S (t− s)f(s, un(s), Gun(s))ds
}∞
n=1

)

≤MKα(B1) + 2
t∫

0

α({t− s)q−1S (t− s)f(s, un(s), Gun(s))ds}∞n=1)

≤MKα(B) + 2M
Γ(α)

t∫
0

(t− s)q−1α({f(s, un(s), Gun(s))}∞n=1)ds

≤MKα(B) + 2M
Γ(α)

t∫
0

(t− s)q−1(L1α(B1(s) + L2α(GB1(s)))ds

≤MKα(B) + 2M
Γ(α)

t∫
0

(t− s)q−1(L1α(B1) + L2α(GB1(s)))ds.

(3.7)

Meanwhile, we have

α(GB1(s)) ≤ α(GB1) ≤ ‖G‖α(B1) ≤ G∗α(B1) ≤ G∗α(B). (3.8)

Therefore, we know

α(Q(B1)(t)) ≤MKα(B) + 2M
Γ(α)

t∫
0

(t− s)q−1(L1α(B) + L2G
∗α(B))ds

≤MKα(B) + 2M(L1 +G∗L2)aq

Γ(q + 1) α(B)

≤M
(
K + 2(L1 +G∗L2)aq

Γ(q + 1)

)
α(B).

Form this inequality, (3.4) and (3.5), it follows that

α(Q(B)) ≤ 2M
(
K + 2(L1 +G∗L2)aq

Γ(q + 1)

)
α(B).

Thus, from (3.1), we find that Q : BR0 → BR0 is a condensing operator.
Finally, Lemma 2.9 guarantees that Q has at least one fixed point in BR0 . There-

fore, the fractional integro-differential evolution equation nonlocal problem (1.1) has
at least one mild solution. This completes the proof.
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In the following, we give an existence result in the case that condition (H3) is not
satisfied. We need the following condition:
(H5) g : C(J,E) → E is completely continuous, and there exist positive constants
b < 1/M and d such that for any r > 0

‖g(u)‖ ≤ b‖u‖c + d for all u ∈ Br.

The following existence result for the fractional integro-differential evolution equa-
tion nonlocal problem (1.1) based on Lemma 2.10.

Theorem 3.2. Let E be a Banach space, A : D(A) ⊂ E → E be a closed linear
operator, −A generates an equicontinuous and uniformly bounded C0-semigroup T (t)
(t ≥ 0) in E, f : J ×E ×E → E, and g : C(J,E)→ E. If the conditions (H1), (H2),
(H4), (H5) and the following inequality hold

4M(L1 +G∗L2)aq

Γ(q + 1) < 1. (3.9)

Then the fractional integro-differential evolution equation nonlocal problem (1.1) has
at least one mild solution in Br with r satisfying

(1− bM)r
M
(
‖u0‖+ d+ M1

(1+q2)1−q1 a
(1+q2)(1−q1)

) > 1, (3.10)

where q2 and M1 are defined by (3.2).

Proof. From the proof of Theorem 3.1, we know that (t − s)q−1S (t −
s)f(s, u(s), Gu(s)) is Bochner’s integrable with respect to t ∈ J , and the fixed point
of operator Q defined by (2.5) is the mild solution of the fractional integro-differential
evolution equation nonlocal problem (1.1). Therefore, the existence of a mild solution
of (1.1) is equivalent to determining a positive constant r such that Q has at least
one fixed point on Br. Indeed, by choosing

r >
M
(
‖u0‖+ d+ M1

(1+q2)1−q1 a
(1+q2)(1−q1)

)
1− bM ,

we can prove that Q has at least one fixed point on Br.
By using the similar method with the proof of Theorem 3.1, we can prove that the

operator Q : Br → C(J,E) is equicontinuous. Next, we prove that Q : Br → C(J,E)
is a condensing operator. For any D ⊂ Br, Q(D) is bounded and equicontinuous, by
Lemma 2.7 there exists a countable set D1 = {un}∞n=1 ⊂ D such that

α(Q(D)) ≤ 2α(Q(D1)). (3.11)

Since Q(D1) ⊂ Q(Br) is equicontinuous, Lemma 2.7 implies

α(Q(D1)) = max
t∈J

α(Q(D1)(t)). (3.12)
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By the conditions (H4), (H5) and a similar method with the proof of Theorem 3.1,
we get that

α(Q(D)) ≤ 4M(L1 +G∗L2)aq

Γ(q + 1) α(D).

From this inequality and (3.9), we can conclude that Q : Br → C(J,E) is a condensing
operator.

Finally, let λ ∈ (0, 1) and u = λQ(u). Then, for t ∈ J

u(t) = λT (t)(u0 − g(u)) + λ

t∫
0

(t− s)q−1S (t− s)f(s, u(s), Gu(s))ds,

and one has

‖u(t)‖ ≤M(‖u0‖+ br + d) + M1M

Γ(q)(1 + q2)1−q1
a(1+q2)(1−q1).

Consequently,
(1− bM)r

M
(
‖u0‖+ d+ M1

Γ(q)(1+q2)1−q1 a
(1+q2)(1−q1)

) ≤ 1.

Thus, by (3.10), there exists some constant r such that ‖u‖ 6= r. By the choice of
Br, there dose not exist u ∈ ∂Br such that u = λQ(u) for some λ ∈ (0, 1). Thus,
we get a fixed point in Br by Lemma 2.10, which is the mild solution of the frac-
tional integro-differential evolution equation nonlocal problem (1.1). This completes
the proof.

Remark 3.3. From [24] we know that analytic semigroup and differentiable semi-
group are an equicontinuous semigroup. In the application of partial differential equa-
tions, such as parabolic equations and strongly damped wave equations, the cor-
responding solution semigroup is analytic semigroup. Therefore, Theorem 3.1 and
Theorem 3.2 in this paper have broad applicability.
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