Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A new composite adsorbent was prepared by modifying low cost local adsorbent (LCL) using MgFe layered double hydroxide (LDH). This low cost local adsorbent was also prepared from the activation of date palm leaf derived from agricultural waste. In comparison to the low LCL, the adsorption capacity of the new composite adsorbent (LCL/MgFe-LDH) was improved. This was measured in terms of its ability to remove lead from wastewater. The Scanning electron microscope (SEM), Energy dispersive spectroscopy (EDS), Fourier-transform infrared spectroscopy (FTIR) and the specific surface area by the (Brunauer, Emmett and Teller) theory (BET) tests were conducted for the characterisation of LCL and LCL/MgFe-LDH. The behaviour of the lead adsorption processes by using LCL/MgFe-LDH as adsorbent was investigated in batch experiments by examining different values of solution pH, contact time, adsorbent dose and initial Pb2+ concentration. High removal efficiency was exhibited by LCL/MgFe-LDH, a value almost double that of LCL. This was attributed to the increase in surface area of LCL/MgFe-LDH (79.7 m2·g–1) in contrast to the surface area of LCL (24.5 m2·g–1). The Freundlich equations and pseudo-second-order kinetics model were appropriate for the provision of adsorption equilibrium data for Pb2+ on adsorbents. These results reveal the great potential of the new composite adsorbent (LCL/MgFe-LDH) if applied to the absorption of heavy metal ions.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
10--18
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
autor
- University of Baghdad, Faculty of Engineering, Baghdad, Iraq
autor
- Kerbala University, Faculty of Engineering, P.O. Box 1125, Freaha, Kerbala, Iraq and University of Baghdad, Faculty of Engineering, P.O. Box 17635, Jadiriya, Baghdad, Iraq
Bibliografia
- ABDULREDHA M., AL-KHADDAR R., JORDAN D., KOT P., ABDULRIHA A., HASHIM K. 2018. Estimating solid waste generation by hospitality industry during major festivals: A quantification model based on multiple regression. Waste Management. Vol. 77 p. 388–400. DOI 10.1016/j.wasman.2018.04.025.
- AHMED M.J., THEYDAN S.K. 2012. Physical and chemical characteristics of activated carbon prepared by pyrolysis of chemically treated date stones and its ability to adsorb organics. Powder Technology. Vol. 229 p. 237–245. DOI 10.1016/j.powtec.2012.06.043.
- AL-HOMAIDAN A.A., AL-HOURI H.J., AL-HAZZANI A.A. 2014. Biosorption of copper ions from aqueous solutions by Spirulina platensis biomass. Arabian Journal of Chemistry. Vol. 7. No. 1 p. 57–62. DOI 10.1016/j.arabjc.2013.05.022.
- ALKAN M., KALAY B., DOGAN M., DEMIRBAS Ö. 2008. Removal of copper ions from aqueous solutions by kaolinite and batch design. Journal of Hazardous Materials. Vol. 153. No. 1–2 p. 867–876. DOI 10.1016/j.jhazmat.2007.09.047.
- ALLEN S.J., MCKAY G., PORTER J. 2004. Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems. Journal of Colloid and Interface Science. Vol. 280. No. 2 p. 322–333. DOI 10.1016/j.jcis.2004.08.078.
- ARECO M.M., HANELA S., DURAN J., AFONSO M., SANTOS D. 2012. Biosorption of Cu(II), Zn(II), Cd(II) and Pb(II) by dead biomasses of green alga Ulva lactuca and the development of a sustainable matrix for adsorption implementation. Journal of Hazardous Materials. Vol. 213–214 p. 123–132. DOI 10.1016/j.jhazmat.2012.01.073.
- AYAWEI N., EKUBO A.T., WANKASI D., DIKIO E.D. 2015. Synthesis and application of layered double hydroxide for the removal of copper in wastewater. International Journal of Chemistry. Vol. 7. No. 1 p. 122–132. DOI 10.5539/ijc.v7n1p122.
- AZMERI A., YULIANUR A. 2019. Effects of irrigation performance on water balance: Krueng Baro Irrigation Scheme (Aceh – Indonesia) as a case study. Journal of Water and Land Development. No. 42 (VII–IX) p. 12–20. DOI 10.2478/jwld-2019-0040.
- BARAKAT M. 2011. New trends in removing heavy metals from industrial wastewater. Arabian Journal of Chemistry. Vol. 4. No. 4 p. 361–377. DOI 10.1016/j.arabjc.2010.07.019.
- BENZAOUI T., SELATNIA A., DJABALI D. 2017. Adsorption of copper (II) ions from aqueous solution using bottom ash of expired drugs incineration. Adsorption Science and Technology. Vol. 36 p. 114–129. DOI 10.1177/ 0263617416685099.
- FAISAL A., NAJI L. 2019. Simulation of ammonia nitrogen removal from simulated wastewater by sorption onto waste foundry sand using artificial neural network. Association of Arab Universities Journal of Engineering Sciences. Vol. 26. No. 1 p. 28–34. DOI 10.33261/jaaru.2019.26.1.004.
- GARG U.K., KAUR M.P., GARG V.K., SUD D. 2007. Removal of hexavalent chromium from aqueous solution by agricultural waste biomass. Journal of Hazardous Materials. Vol. 140. No. 1–2 p. 60–68. DOI 10.1016/j.jhazmat.2006.06.056.
- HO Y.S., MCKAY G. 1999. Pseudo-second order model for sorption processes. Process Biochemistry. Vol. 34. No. 5 p. 451–465. DOI 10.1016/S0032-9592(98)00112-5.
- HUR J., SHIN J., YOO J., SEW Y. 2015. Competitive adsorption of metals onto magnetic graphene oxide: Comparison with other carbonaceous adsorbents. The Scientific World Journal. Art. ID 836287. DOI 10.1155/2015/836287.
- JIA Y., ZHANG Y., FU J. 2019. A novel magnetic biochar/MgFelayered double hydroxides composite removing Pb2+ from aqueous solution: Isotherms, kinetics and thermodynamics. Colloids and Surfaces A: Physicochemical and Engineering Aspects. Vol. 567 p. 278–287. DOI 10.1016/j.colsurfa.2019.01.064.
- KHADHRI N., SAAD M., MOSBAH M., MOUSSAOUI Y. 2019. Batch and continuous column adsorption of indigo carmine onto activated carbon derived from date palm petiole. Journal of Environmental Chemical Engineering. Vol. 7. No. 1 p. 1–43. DOI 10.1016/j.jece.2018.11.020.
- KURNIAWAN T., CHAN G., LO W., BABEL S. 2006. Physicochemical treatment techniques for wastewater laden with heavy metals. Chemical Engineering Journal. Vol. 118. No. 1–2 p. 83–98. DOI 10.1016/j.cej.2006.01.015.
- LAROUS S.,MENIAI A., LEHOCINE M. 2005. Experimental study of the removal of copper from aqueous solutions by adsorption using sawdust. Desalination. Vol. 185 p. 483–490. DOI 10.1016/j.desal.2005.03.090.
- LIANG X., ZANG Y., XU Y., TAN X., HOU W., WANG L., SUN Y. 2013. Sorption of metal cations on layered double hydroxides. Colloids and Surfaces A: Physicochemical and Engineering Aspects. Vol. 433 p. 122–131. DOI 10.1016/j.colsurfa.2013.05.006.
- MAHAGAMAGE M.,MANAGE P. 2018. Water quality and microbial contamination status of Madawachchiya, Padaviya and Kebithigollewa areas in Anuradhapura District, Sri Lanka. Journal of Water and Land Development. No. 42 p. 1–11. DOI 10.2478/jwld-2019-0039.
- MOHAMMED A.A., SAMAKA I.S. 2018. Bentonite coated with magnetite Fe3O4 nanoparticles as a novel adsorbent for copper (II) ions removal from water/wastewater. Environmental Technology and Innovation. Vol. 10 p. 162–174. DOI 10.1016/j.eti.2018.02.005.
- MOSTAFA M.S., BAKR A.S.A., EL NAGGAR A.M.A., SULTAN E.S.A. 2015. Water decontamination via the removal of Pb (II) using a new generation of highly energetic surface nanomaterial: Co+2Mo+6 LDH. Journal of Colloid and Interface Science. Vol. 461. p. 261–272. DOI 10.1016/j.jcis.2015.08.060.
- MURDOCK J.N., WETZEL D.L. 2009. FT-IR Microspectroscopy Enhances Biological and Ecological Analysis of Algae. Applied Spectroscopy Reviews. Vol. 44. No. 4 p. 335–361. DOI 10.1080/05704920902907440.
- OMO-OKORO P.N., DASO A.P., OKONKWO J.O. 2018. A review of the application of agricultural wastes as precursor materials for the adsorption of per- and polyfluoroalkyl substances: A focus on current approaches and methodologies. Environmental Technology and Innovation. Vol. 9 p. 100–114. DOI 10.1016/j.eti.2017.11.005.
- ROJAS R. 2016. Effect of particle size on copper removal by layered double hydroxides. Chemical Engineering Journal. Vol. 303 p. 331–337. DOI 10.1016/j.cej.2016.06.007.
- SADON F., IBRAHEM A.S., ISMAIL K.N. 2014. Comparative study of single and multi-layered fixed bed columns for the removal of multi-metal element using rice husk adsorbents. Journal of Applied Sciences. Vol. 14. No. 12 p. 1234–1243. DOI 10.3923/jas.2014.1234.1243.
- SAHA T.K. 2010. Adsorption of methyl orange onto chitosan from aqueous solution. Water Resource and Protection. Vol. 2. No. 10 p. 898–906. DOI 10.4236/jwarp.2010.210107.
- SHAFIQ M., ALAZBA A., AMIN M.T. 2018. Removal of heavy metals from wastewater using date palm as a biosorbent: A comparative review. Sains Malaysiana. Vol. 47. No. 1 p. 35–49. DOI 10.17576/jsm-2018-4701-05.
- SHARIFNIA S., KHADIVI M., SHOJAEIMEHR T., SHAVISI Y. 2012. Characterization, isotherm and kinetic studies for ammonium ion adsorption by light expanded clay aggregate (LECA). Journal of Saudi Chemical Society. Vol. 20 p. S342–S351. DOI 10.1016/j.jscs.2012.12.003.
- SIEGEL F.R. 2002. Contaminant/natural background values. Timing and processes. In: Environmental geochemistry of potentially toxic metals. Berlin, Heidelberg. Springer p. 77–101.
- THOMMES M., KANEKO K., NEIMARK A.V., OLIVIER J.P., RODRIGUEZ-REINOSO F., ROUQUEROL J., SING K. 2015. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry. Vol. 87. No. 9–10 p. 1–19. DOI 10.1515/pac-2014-1117.
- TRAN H.N., LIN C.C., WOO S.H., CHAO H.P. 2018. Efficient removal of copper and lead by Mg/Al layered double hydroxides intercalated with organic acid anions: Adsorption kinetics, isotherms, and thermodynamics. Applied Clay Science. Vol. 154 p. 17–27. DOI 10.1016/j.clay.2017.12.033.
- WANG C., WANG H., GU G. 2018. Ultrasound-assisted xanthation of cellulose from lignocellulosic biomass optimized by response surface methodology for Pb(II) sorption. Carbohydrate Polymers. Vol. 182 p. 21–28. DOI 10.1016/j.carbpol.2017.11.004.
- WANG J., CHEN C. 2009. Biosorbents for heavy metals removal and their future. Biotechnology Advances. Vol. 27. No. 2 p. 195–226. DOI 10.1016/j.biotechadv.2008.11.002.
- WANI A.L., ARA A., USMANI J.A. 2015. Lead toxicity: A review. Interdisciplinary toxicology. Vol. 8. No. 2 p. 55–64. DOI 10.1515/intox-2015-0009.
- XIE Y., YUAN X.,WU Z., ZENG G., JIANG L., PENG X., LI H. 2019. Adsorption behavior and mechanism of Mg/Fe layered double hydroxide with Fe3O4-carbon spheres on the removal of Pb(II) and Cu(II). Journal of Colloid and Interface Science. Vol. 536 p. 440–455. DOI 10.1016/j.jcis.2018.10.066.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2a74008a-454f-48a8-a186-debe8bf84486