PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ku Band Bethe Hole Coupler Using Gap Waveguide Technology

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The gap waveguide technology is a new technique used for designing and fabricating microwave components, ensuring a low-loss and easy fabrication process, especially at high frequencies, and allowing for the production of multilayer structures due to the lack of requirement of an electrical connection between the metal layers of the waveguide structure. This paper presents the design and areas of implementation of single-hole and multi-hole 20 dB Bethe couplers, using the groove gap waveguide (GGW) technology for Ku band. Simulation results show that the operating bandwidth of the proposed design is over 40% wider, and its isolation rate is more than 25 dB higher. By using the multi hole configuration, a bandwidth that is more than 59% wider and the isolation rate of over 30 dB may be obtained.
Rocznik
Tom
Strony
70--74
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
  • Graduate University of Advanced Technology, Kerman, Iran
  • Graduate University of Advanced Technology, Kerman, Iran
  • Graduate University of Advanced Technology, Kerman, Iran
Bibliografia
  • [1] M. Bozzi, M. Pasian, L. Perregrini, and K. Wu, “On the losses in substrate integrated waveguides”, in Proc. Eur. Microwave Conf., Munich, Germany, 2007, pp. 384–387 (doi: 10.1109/EUMC.2007.4405207).
  • [2] F. Xu and K. Wu, “Guided-wave and leakage characteristics of substrate integrated waveguide”, IEEE Trans. on Microw. Theory and Techniq., vol. 53, no. 1, pp. 66–72, 2005 (doi: 10.1109/TMTT.2004.839303).
  • [3] M. Pasian, M. Bozzi, and L. Perregrini, “A formula for radiation loss in substrate integrated waveguide”, IEEE Trans. on Microwave Theory and Techniques, vol. 62, no. 10, 2014 (doi: 10.1109/TMTT.2014.2341663).
  • [4] J. Liu, A. U. Zaman, and J. Yang, “Design of wideband slot array antenna by groove gap waveguide in millimeter waves”, in Proc. IEEE-APS Topical Conf. on Antenn. and Propag. in Wirel. Commun. APWC 2018, Cartagena des Indias, Colombia, 2018, pp. 725–728 (doi: 10.1109/APWC.2018.8503800).
  • [5] A. Vosoogh et al., “W-band low-profile monopulse slot array antenna based on gap waveguide corporate-feed network”, IEEE Trans. on Antenn. and Propag., vol. 66, no. 12, pp. 6997–7009, 2018 (doi: 10.1109/TAP.2018.2874427).
  • [6] L. Wang et al., “Low-dispersive leaky-wave antenna integrated in groove gap waveguide technology”, IEEE Trans. on Antenn. and Propag., vol. 66, no. 11, pp. 5727–5736, 2018 (doi: 10.1109/TAP.2018.2863115).
  • [7] D. Zarifi, A. Farahbakhsh, A. U. Zaman, and P.-S. Kildal, “Design and fabrication of a high-gain 60-GHz corrugated slot antenna array with ridge gap waveguide distribution layer, IEEE Trans. on Antenn. and Propag., vol. 64, no. 7, pp. 2905–2913, 2016 (doi: 10.1109/TAP.2016.2565682).
  • [8] A. U. Zaman and P.-S. Kildal, ”Different gap waveguide slot array configurations for mmwave fixed beam antenna application”, in Proc. 10th Eur. Conf. on Antenn. and Propag. EuCAP 2016, Davos, Switzerland, 2016, pp. 1–4 (doi: 10.1109/EuCAP.2016.7481541).
  • [9] A. Vosoogh et al., “E-band 3-D metal printed wideband planar horn array antenna”, in Proc. In. Symp. on Antenn. and Propag. ISAP2016, Okinawa, Japan, 2016, pp. 304–305.
  • [10] R. Maaskant et al., “Spatial power combining and splitting in gap waveguide technology”, IEEE Microw. and Wirel. Components Lett., vol. 26, no. 7, pp. 472–474, 2016 (doi: 10.1109/LMWC.2016.2574828).
  • [11] M. S. Sorkherizi, A. Vosoogh, A. A. Kishk, and P.-S. Kildal, “Design of integrated diplexer-power divider”, in Proc. IEEE MTT-S Int. Microw. Symp. IMS 2016, San Francisco, CA, USA, 2016 (doi: 10.1109/MWSYM.2016.7540124).
  • [12] A. Vosoogh, A. A. Braz´alez, and P.-S. Kildal, “A V-band inverted microstrip gap waveguide end-coupled bandpass filter”, IEEE Microw. and Wirel. Compon. Lett., vol. 26, no. 4, pp. 261–263, 2016 (doi: 10.1109/LMWC.2016.2538598).
  • [13] P.-S. Kildal et al., “Design and experimental verification of ridge gap waveguide in bed of nails for parallel-plate mode suppression”, IET Microw., Antenn. and Propag., vol. 5, no. 3, pp. 262–270, 2011 (doi: 10.1049/iet-map.2010.0089).
  • [14] E. Rajo-Iglesias and P.-S. Kildal, “Groove gap waveguide: A rectangular waveguide between contactless metal plates enabled by parallel-plate cut-off”, in Proc. of the 4th Eur. Conf. on Antenn. and Propag., Barcelona, Spain, 2010.
  • [15] A. A. Brazalez, A. U. Zaman, and P.-S. Kildal, “Improved microstrip filters using PMC packaging by lid of nails”, IEEE Trans. on Compon., Packag. and Manufact. Technol., vol. 2, no. 7, pp. 1075–1084, 2012 (doi: 10.1109/TCPMT.2012.2190931).
  • [16] A. Valero-Nogueira et al., “Gap waveguides using a suspended strip on a bed of nails”, IEEE Antenn. and Wirel. Propag. Lett., vol. 10, pp. 1006–1009, 2011 (doi: 10.1109/LAWP.2011.2167591).
  • [17] L. F. Carrera-Su´arez et al., “A novel twist between Gap Waveguides for compact slot-array antennas”, in Proc. IEEE Antenn. and Propag. Soc. Int. Symp. APSURSI 2014, Memphis, TN, USA, 2014, pp. 456–457 (doi: 10.1109/APS.2014.6904559).
  • [18] D. M. Pozar, Microwave Engineering, 4th ed. Wiley, 2011 (ISBN: 978-0-470-63155-3).
  • [19] H. Bethe, “Theory of diffraction by small holes”, Phys. Rev., vol. 66, pp. 163–182, 1944 (doi: 10.1103/PhysRev.66.163).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2a6f52c9-ac3a-43fe-9d4d-fdbceba606bf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.