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Abstract: The paper presents the problem of position control of DC motor with rated 
voltage 24 V loaded by flywheel. The fractional order PD controller implemented in 
National Instruments NI ELVIS II programmed in LabView is used for controlling. The 
simple method for determining stability regions in the controller parameters space is 
given. Knowledge of these regions permits tuning of the controller and ensures required 
the phase margin of the system. 
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1. Introduction 
 
 In recent years considerable attention has been paid to fractional calculus and its applica-
tion in many areas in science and engineering (see, e.g. [4, 7, 9, 12]). 
 In control system fractional order controllers are used to improve the performance of the 
feedback control loop. The fractional PID controllers, namely PIλDμ controllers, including an 
integrator of λ order and a differentiator of μ order were proposed in [15, 16]. The problem of 
tuning the PIλDμ controllers have been presented in the literature (see, e.g. [5, 6, 8, 10, 11, 
18, 23]). The asymptotic stability is the basic requirement of a closed-loop system. Some 
methods for determining the asymptotic stability regions in the fractional controller parameter 
space were proposed in [8, 17]. Gain and phase margins are measures of relative stability for 
a feedback system. For example, in paper [18] a simple method of determining the stability 
region (satisfying the conditions of gain and phase margins) in the parameter space of a frac-
tional order inertial plant with time delay and a fractional order PID controller was given. 
 In order to implement (digital realization) of the fractional order controller the approximate 
time rational transfer function should be determined. Some methods of obtaining the discrete 
transfer function approximating the continuous fractional order transfer function have been 
proposed in the literature [12-14, 20-22]. Generally, the digital transfer function is based on 
the canonical form of the infinite impulse response filter (IIR filter). Such an algorithm can be 
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directly implemented into any processor based devices as for instance programmable logic 
controller (PLC) [13, 14]. 
 In this work the problem of position control of DC motor loaded by flywheel is presented. 
The considered DC-motor is a component of the system QUANSER DC Motor Position Con-
trol (DCMPC). The fractional order PD controller implemented in the device National Instru-
ments NI ELVIS II programmed in the graphical environment LabView is used. The para-
metric synthesis of the controller is carried out using the proposed method for determining the 
stability regions in the controller parameter space for the specified phase margin of the system. 
The controlled object is modeled as the transfer function of the inertia with integration. The 
comparative studies of this control system are presented. 
 
 

2. Controlled system 
 
 The DC Motor Position Control system shown in Figure 1 consists of a direct-current 
motor with an inertia wheel on the motor shaft with rotor inertia 20 gcm2. The nominal output 
power of the motor is 12.98 W and the maximal rotational speed reaches 7500 rpm with speed 
constant 685 rpm/V. The angular position of the motor shaft is measured by an optical encoder 
with a resolution of approximately 0.0879°. Due to the resolution of the encoder and the use of 
the 24 bit counter, the range of values that can be read by the encoder is approximately 
±4096 ⋅2π. The motor is driven using a pulse-width modulated (PWM) power amplifier. The 
maximum output voltage of the amplifier is 24 V.  
 

 
 

Fig. 1. DCMPC system and controlled object: 1) DC motor, 2) encoder, 
3) motor metal chamber, 4) Inertial load 

 
 The step-test method is used for accurate plant modeling for control system analysis and 
design. This model is compared with the measured response by running the simulation and 
actual system in parallel. The model parameters are tuned for a better fit. The identification of 
the motor model parameters is performed using 2 V step input in an open-loop. Figure 2 
shows the comparison of the model and the motor response characteristics which are carried 
out for sampling time 5 ms. 
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 The resulting model is a transfer function from voltage to motor shaft position 
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where K is the steady-state gain, and J is the time constant. 
 

Fig. 2. Step responses of plant and its 
model with step input 2 V 

 

 
 The experimentally obtained step response of the system is approximated to the step re-
sponse of the model (1) with the parameters K = 35 [rad/sV] and J = 0.15 [s].  
 
 
 

3. Fractional order PID controller 
 
 The fractional order PIλDμ  controller [15, 16] was proposed as a generalization of the PID 
controller [2] with integrator of real order λ and differentiator of real order μ. The transfer 
function of such a type controller in the Laplace domain takes the form 

  ,0,0,)( >>++= − μλμλ skskksC dip   (2) 

where kp, ki i kd denote the proportional, integral and differential gains of the controller re-
spectively. kp, ki and kd parameters usually take non-negative values. 
 Taking λ = 1 and μ = 1 we obtain a classical PID controller. If kd = 0 or ki = 0 we obtain 
a PIλ controller or PDμ controller, respectively. All these types of controllers are particular 
cases of the PIλDμ controller. In this paper we use the PDμ controller, whose transfer function 
has the form 

  .)( μskksC dp +=   (3) 

 The block diagram of the considered feedback control system is shown in Figure 3, where 
G(s) has form (1) and C(s) has form (3). 
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Fig. 3. Feedback control system structure 

 
3.1. Parametric synthesis of the controller 
 The asymptotic stability is the basic requirement of a closed-loop system. Gain and phase 
margins are measures of relative stability for a feedback system, therefore the synthesis of 
control systems is very often based on them. In typical control systems the phase margin is 
from 30° to 60° whereas the gain margin is from 5 dB to 10 dB.  
 In this paper we tuning the controller for the specified phase margin, because a phase 
margin is closely related to a transient response, i.e. overshoot. For this purpose we use the 
phase margin tester exp(−jφ) , where φ is a phase margin. This tester does not exist in the real 
control system, it is only used for the controller tuning.  
 Taking into account the phase margin tester exp(−jφ)  in the main path of control, plant (1) 
and controller (3) we obtain the characteristic polynomial of the closed-loop system  

  ).1()()( +++= − τμφ ssskkKesw dp
j   (4) 

 Using the classical D-partition method the stability region in the parameter plane (kd, kp) 
may be determined and the parameters can be specified. The stability boundaries are curves on 
which each point corresponds to polynomial (4) having zeros on the imaginary axis. It may be 
the real zero boundary or the complex zero boundary. It is easy to see that polynomial (4) has 
zero s = 0 if kp = 0 (the real zero boundary). The complex zero boundary corresponds to the 
pure imaginary zeros of (4). We obtain this boundary by solving the equation 

  ,0)1())(()( =+++= − ωτωωω μφ jjjkkKejw dp
j   (5) 

which we get by substituting ωjs =  in polynomial (4) and equating to 0. The complex Equa-
tion (5) can be rewritten as a set of real equations in the form 

  .0)](Im[,0)](Re[ == ωω jwjw   (6) 

where Re[w( jω)] and Im[w( jω)] denote the real and the imaginary parts of (5), respectively. 
Finally, by solving the Equations (6) we obtain 
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 Equations (7) and (8) determine the complex zero boundary as a function of ω. The real 
zero boundary and the complex zero boundary for ω ≥ 0 decompose plane (kd, kp) into some 
regions. The stability region is chosen by testing an arbitrary point from each region and 
checking the stability of polynomial (4). In this paper only the stability region in the parameter 
plane of polynomial (4) is presented. When the stability regions are known, the tuning of the 
fractional controller can be carried out. 
 On computing complex and real zero boundaries by the proposed method, we obtain the 
stability regions in the controller parameter plane (kd, kp). The stability regions for φ = 60°, 
μ = 0.6 are shown in Figure 3. The complex boundary of stability regions is calculated for 
transfer function (1) with K = 35 and τ  = 0.15. The stability region lies between line kp = 0 
(the real zero boundary) and the curve assigned to specified phase margin φ (the complex zero 
boundary). On choosing any point from the stability region we obtain the controller parameter 
values provided the phase margin of this system is greater than that specified for drawing the 
complex boundary. Any point from the stability region provides a phase margin of this system 
greater than 60°. The value of μ = 0.6 is chosen as an example. 
 

Fig. 4. Stability regions for 
φ = 60°, μ = 0.6 
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 The controller parameters and stability margins of the control system for all points marked 
in Figure 4 are listed in Table 1. It is shown that the stability margin values are greater than 
that specified for drawing the complex boundary of the stability region. Table 1 confirms that 
points from the stability regions satisfy the phase margin requirements. 

 
Table 1. Controller parameters and phase margins 

Point Controller parameters Phase margin [°] 
1 kd = 0.3, kp = 0.3, μ = 0.6 64.5 
2 kd = 0.6, kp = 0.2, μ = 0.6 63.2 
3 kd = 1.0, kp = 0.1, μ = 0.6 61.3 
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3.2. Digital realization of the fractional order controller 

 Transfer functions (2) and (3) of the controller are the irrational functions in the variable s. 
Therefore, accurate physical realization of the differentiation and integration of a fractional 
order is not possible. In order to implement the fractional order controller the approximate 
time rational transfer function should be determined. The approximate time rational transfer 
function may be in the form of a discrete transfer function with integral orders. Such a transfer 
function can be directly implemented into any processor based devices. Some methods of ob-
taining the discrete transfer function approximating the continuous fractional order transfer 
function have been proposed in the literature [12-14, 20-22]. 
 In the paper [19] the realization of fractional order controller implemented in National 
Instruments sbRIO-9631 controller programmed in LabView was presented. In order to digi-
tally realize the fractional order controller transfer function, operator-based continuous frac-
tion expansion (CFE) scheme was applied. In this paper the same scheme is used, however the 
realization of fractional order PDμ controller is implemented in National Instruments NI Elvis 
II device. 
 Transfer function (2) corresponds in the discrete domain to the discrete transfer function 
has the form 

  ( ) ,)()( 11 μ
ϖ −− += zkkzC dp   (9) 

where the approximate transfer function of the differentiator of real order μ has the form [13] 
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CFE{.} is the continued fraction expansion, P and Q are polynomials of degree p and q, re-
spectively, a is ratio term and T is sampling time. Depending on the value of a = {0, 1/7, 1} 
we obtain Euler rule, Al-Alaoui rule and Tustin rule, respectively. Coefficients of P and Q 
polynomials depend to the order of the approximate model and we can calculate them from the 
following forms for p = q = 1 
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whereas for p = q = 2  
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 The practical fractional controller realization is implemented in NI Elvis II device using 
the NI LabView graphical programming language. The program window for entering the 
values of controller parameters and approximation parameters is shown in Figure 5.  
 

 

Fig. 5. Program window for setting up fractional control coefficients 
 
 One of the application feature is a set of controller parameters like kp, ki, kd, λ, μ and 
approximation parameters T, a. All those data are used to determine coefficients of appro-
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ximating discrete transfer function. For example, if the controller parameters are kd = 1, 
kp = 0.1, μ = 0.6 (point 3 in Tab. 1) and approximating coefficients are T = 0.005, a = 0.333, 
n = 1 than the discrete transfer function approximating the continuous fractional order transfer 
function (3) has the form 

  ,
15
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whereas for n = 2, T = 0.005 s, a = 0.333 and the same values of controller parameters (point 3 
in Table 1) the discrete transfer function (9) has the form 
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 The comparison of Bode characteristics for the continuous transfer function of controller 
(3) with kd = 1, kp = 0.1, μ = 0.6 and the discrete transfer functions (13) and (14) is shown in 
Figure 6. 
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Fig. 6. Comparison of Bode plots of transfer functions (13), (14) and (3) with kd = 1, kp = 0.1, μ = 0.6. 

 
 

4. Experiments 
 
 The experiments made it possible to observe how the position control loop operates as 
a result of the set point changing from −2π to +2π radians. All experiments were carried out 
for sampling time T = 0.005 s. The controller parameter values are chosen according to Table 
1 which presents phase margin specifications (points marked in Fig. 4). Step responses of the 
system controlled by a practical implemented controller with n = 1 and n = 2 are shown in 
Figures 7 and 8, respectively. From these figures we can see that the order of approximation 
affects the character of step responses. When n = 1 all responses are characterized by over-

Unauthenticated | 89.73.89.243
Download Date | 9/26/13 12:16 PM



Vol. 62(2013)                 Position control of DC motor using fractional order controller 513 

shoot whereas all step responses obtained for n = 2 are aperiodic. The system response for the 
control parameters corresponding the point 1 of Table 1 has the largest overshoot (Fig. 7). 
 

Fig. 7. Step responses of the closed-
loop system with the PDμ  controller 

(approximation order n = 1) 

 

 

Fig. 8. Step responses of the closed-
loop system with the PDμ  controller 

(approximation order n = 2) 

 

 

Fig. 9. Step responses of the closed-
loop system with the PDμ  controller 

related to μ (n = 2) 
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 In laboratory test bench is also examined the impact of value coefficient μ on step 
responses. The controller parameters kd and kp are taken in accordance with point 3 of Table 1 
and the value of μ is varied. Exemplary time responses obtained for μ = 0.3, 0.5, 0.7 are 
shown in Figure 9. We can see the trend of changes in position characteristics versus values of 
coefficient μ. The step response with the shortest settling time, the zero of steady state error 
and the lack of overshoot is obtained for μ = 0.5. The figure shows that for smaller values of μ 
(e.g. μ = 0.3) step responses are characterized by the overshoot. 
 

Fig. 10. Step responses of the closed-
loop system with the PDμ  controller 

related to a (μ = 0.5, n = 2) 

 
 
 Another examination refers to the influence of the approximation coefficient a on step 
responses. The controller parameters kd and kp are taken according to point 3 of Table 1 with 
the value of μ = 0.5. Figure 10 shows the comparison of characteristics obtained for three 
values of the parameter a, i.e. 0.1, 0.333 and 0.9. We can see that a coefficient a has the 
significant effect on the overshoot and steady state error. The increasing value of a results in 
larger oscillations, whereas the decreasing causes a larger steady state error. 
 From Figures 9 and 10 we can see that the values of coefficient a and order μ have a signi-
ficant effect on the overshoot and stady state error. 
 
 
 

5. Conclusion 
 
 In this paper the position control of DC motor shaft loaded by flywheel is given. The 
fractional order PD controller implemented into National Instruments NI ELVIS II device pro-
grammed in LabVIEW is used. The parametric synthesis of the fractional order PD controller 
was performed using the proposed method for determining the stability regions in the para-
meter space of the controller. Knowledge of these regions permits tuning of the controller and 
ensures required the phase margin of the system. 
 The results of experimental research confirm that the proposed implementation technique 
simplifies the process of determining digital realization of the continous fractional order con-
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troller. Thanks to graphical interface user is able to introduce fractional order controller gains 
and automatically determine the discrete transfer function approximating the continuous 
fractional order transfer function.  
 
 
Acknowledgments 
The work was supported by the National Centre of Science in Poland under grant No. N N514 638940. 
 
 
References 
 [1] Al-Alaoui M.A., Filling the gap between the bilinear and the backward difference Transforms: an 

interactive design approach. Int. J. Elect. Eng. Edu. 34(4): 331-337 (1997). 
 [2] Astrom K.J., Hagglund T., PID Controllers: Theory, Design, and Tuning. 2nd ed. Research Triangle 

Park, NC: Instrument Society of America (1995). 
 [3] Biswas A., Das, S, Abraham A., Dasgupta S., Design of fractional-order PIλDμ controllers with an 

improved differential evolution. Engineering Applications of Artificial Intelligence 22(2): 343-350 
(2009). 

 [4] Busłowicz M., Selected problems of continuous-time linear systems of non-integer order. Measure-
ment Automation and Robotics 2: 93-114 (2010) (in Polish). 

 [5] Caponetto R., Dongola G., Fortuna L., Gallo A., New results on the synthesis of FO-PID con-
trollers. Communications in Nonlinear Science and Numerical Simulation 15(4): 997-1007 (2010). 

 [6] Castillo J., Feliu V., Rivas R., Sanchez L., Design of a class of fractional controllers from frequency 
specifications with guaranteed time domain behavior, Computers and Mathematics with Applica-
tions 59(5): 1656-1666 (2010). 

 [7] Das S., Functional fractional calculus for system identification and controls. Springer, Berlin (2008). 
 [8] Hamamci S.E., An algorithm for stabilization of fractional-order time delay systems using fractio-

nal-order PID controllers, IEEE Trans. on Automatic Control 52: 1964-1969 (2007). 
 [9] Kaczorek T., Selected Problems of Fractional Systems Theory. Springer, Berlin (2011). 
[10] Luo Y., Chen Y.Q., Fractional order [proportional derivative] controller for a class of fractional 

order systems. Automatica 45(10): 2446-2450 (2009). 
[11] Monje C.A., Vinagre B.M., Feliu V., Chen Y., Tuning and auto-tuning of fractional order control-

lers for industry applications. Control Engineering Practice 16: 798-812 (2008). 
[12] Ostalczyk P., Epitome of the Fractional Calculus, Theory and its Applications in Automatics. Pub-

lishing Department of Technical University of Łódź (2008) (in Polish). 
[13] Petras I., Fractional-order feedback control of a DC motor. Journal of Electrical Engineering 60(3): 

117-128 (2009). 
[14] Petras I., Realization of fractional-order controller based on PLC and its utilization to temperature 

control. Transfer inovacii 14: 34-38 (2009). 
[15] Podlubny I., Fractional differential equations. Academic Press, San Diego (1999). 
[16] Podlubny I., Fractional-order systems and PIλDμ controllers. IEEE Trans. on Automatic Control 44:  

208-214 (1999). 
[17] Ruszewski A., Stability regions of closed loop system with time delay inertial plant of fractional 

order and fractional order PI controller. Bull. Pol. Ac.: Sci. Tech. 56(4): 329-332 (2008). 
[18] Ruszewski A., Stabilization of fractional-order inertial plants with time delay using fractional PID 

controllers. Measurement Automation and Robotics 2: 406-414 (2009) (in Polish). 
[19] Ruszewski A., Sobolewski A., Comparative studies of control systems with fractional controllers. 

Przegląd Elektrotechniczny 88(4b): 204-208 (2012). 
[20] Tenreiro M., Galhano A.M., Oliveira A.M., Tar J.K., Approximating fractional derivatives through 

the generalized mean. Communications in Nonlinear Science and Numerical Simulation 14(11): 
3723-3730 (2009). 

Unauthenticated | 89.73.89.243
Download Date | 9/26/13 12:16 PM



                                                          A. Ruszewski, A. Sobolewski                                        Arch. Elect. Eng. 516 

[21] Vinagre B.M., Podlubny I., Hernandez A., Feliu V., Some approximations of fractional order 
operators used in control theory and applications. Fractional Calculus and Applied Analysis 3(3): 
231-248 (2000). 

[22] Vinagre B.M., Chen Y.Q., Petras I., Two direct Tustin discretization methods for fractional – order 
differentiator/integrator. Journal of the Franklin Institute: Engineering and Applied Mathematics 
340: 349-362 (2003). 

[23] Zhao C., Xue D., Chen Y.Q., A fractional order PID tuning algorithm for a class of fractional order 
plants. [In:] Proc. of the IEEE International Conference on Mechatronics & Automation, pp. 216-
221, Niagara Falls, Canada (2005). 

 
 

Unauthenticated | 89.73.89.243
Download Date | 9/26/13 12:16 PM


