PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Performance of a combined cycle power plant due to auxiliary heating from the combustion chamber of the gas turbine topping cycle

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Energy demand is increasing exponentially in the last decade. To meet such demand there is an urgent need to enhance the power generation capacity of the electrical power generation system worldwide. A combined-cycle gas turbines power plant is an alternative to replace the existing steam/gas electric power plants. The present study is an attempt to investigate the effect of different parameters to optimize the performance of the combined cycle power plant. The input physical parameters such as pressure ratio, air fuel ratio and a fraction of combustible product to heat recovery heat exchanger via gas turbine were varied to determine the work output, thermal efficiency, and exergy destruction. The result of the present study shows that for maximum work output, thermal efficiency as well as total exergy destruction, extraction of combustible gases from the passage of the combustion chamber and gas turbine for heat recovery steam generator is not favorable. Work output and thermal efficiency increase with an increase in pressure ratio and decrease in air fuel ratio but for minimum total exergy destruction, the pressure ratio should be minimum and air fuel ratio should be maximum.
Rocznik
Strony
147--162
Opis fizyczny
Bibliogr. 34 poz., rys.
Twórcy
  • Department of Mechanical and Industrial Engineering, College of Engineering, Majmaah University, Majmaah 11952, Saudi Arabia
Bibliografia
  • [1] Gao M., Beig G., Song S., Zhang H., Hu J., Ying Q.: The impact of power generation emissions on ambient PM 2.5 pollution and human health in China and India. Environ. Int. 121(2018), 1, 250–259.
  • [2] Friedler F.: Process integration, modelling and optimisation for energy saving and pollution reduction. Appl. Therm. Eng. 30(2010), 16, 2270–2280.
  • [3] Colera M., Soria Á., Ballester J.: A numerical scheme for the thermodynamic analysis of gas turbines. Appl. Therm. Eng. 147(2019), 521–536.
  • [4] Athari H., Soltani S., Rosen M.A., Seyed Mahmoudi S.M., Morosuk T.: Gas turbine steam injection and combined power cycles using fog inlet cooling and biomass fuel: A thermodynamic assessment. Renew. Energy 92(2016), 95–103.
  • [5] Ibrahim T.K., Rahman M.M.: Effect of compression ratio on performance of combined cycle gas turbine. Environ. Int. Energy Eng. 2(2012), 1, 9–14.
  • [6] Ibrahim T.K., Rahman M.M., Abdalla A.N.: Optimum gas turbine configuration for improving the performance of combined cycle power plant. Procedia Eng. 15(2011), 4216–4223
  • [7] Padture N.P., Gell M., Jordan E.H.: Thermal barrier coatings for gas-turbine engine applications. Science 296(2002), 5566, 280–284.
  • [8] Ibrahim T.K., Basrawi F., Awad O.I., Abdullah A.N., Najafi G., Mamat R.: Thermal performance of gas turbine power plant based on exergy analysis. Appl. Therm. Eng. 115(2017), 977–985.
  • [9] Paepe W. De., Montero M., Bram S., Contino F., Parente A.: Waste heat recovery optimization in micro gas turbine applications using advanced humidified gas turbine cycle concepts. Appl. Energy 207(2017), 218–229.
  • [10] Alklaibi A.M., Khan M.N., Khan W.A.: Thermodynamic analysis of gas turbine with air bottoming cycle. Energy 107(2016), 603–611.
  • [11] Ayub A., Sheikh N.A., Tariq R., Khan M.M.: Thermodynamic optimization of air bottoming cycle for waste heat recovery. In: Proc. 2nd Int. Conf. Energy Syst. Sustain Dev. 2018, 59–62.
  • [12] Kotowicz J., Job M.: Thermodynamic and economic analysis of a gas turbine combined cycle plant with oxy-combustion. Arch. Thermodyn. 34(2013), 4, 215–233.
  • [13] Khan M.N., Tlili I.: Innovative thermodynamic parametric investigation of gas and steam bottoming cycles with heat exchanger and heat recovery steam generator: Energy and exergy analysis. Energ. Rep. 4(2018), 497–506.
  • [14] González-Díaz A., Alcaráz-Calderón A.M., González-Díaz M.O., MéndezAranda Á., Lucquiaud M., González-Santaló J.M.: Effect of the ambient conditions on gas turbine combined cycle power plants with post-combustion CO2 capture. Energy 134(2017), 221–233.
  • [15] Günnur Şen., Mustafa Nil., Hayati Mamur, Halit Doğan, Mustafa Karamolla, Mevlüt Karaçor, Fadıl Kuyucuoğlu, Nuran Yörükeren, Mohammad R.A.B.: The effect of ambient temperature on electric power generation in natural gas combined cycle power plant – A case study. Energy 4(2018), 682–690.
  • [16] Singh S., Kumar R.: Ambient air temperature effect on power plant. Environ. Int. Sc. Tech. 4(2012), 8, 3916–3923.
  • [17] Khan M.N., Tlili I.: Performance enhancement of a combined cycle using heat exchanger bypass control: A thermodynamic investigation. J. Clean. Prod. 192(2018), 443–452.
  • [18] Ghazikhani M., Khazaee I., Abdekhodaie E.: Exergy analysis of gas turbine with air bottoming cycle. Energy 72(2014), 599–607.
  • [19] Costea M., Feidt M., Alexandru G., Descieux D.: Optimization of gas turbine cogeneration system for various heat exchanger configurations. Oil Gas Sci. Technol. 67(2011), 3, 517–535.
  • [20] Khan M.N., Tlili I.: New approach for enhancing the performance of gas turbine cycle: A comparative study. Results. Eng. 2(2019), 100–108.
  • [21] Bataineh K., Khaleel B.A.: Thermodynamic analysis of a combined cycle power plant located in Jordan: A case study. Arch. Thermodyn. 41(2020), 1, 95–123.
  • [22] Ghazikhani M., Passandideh-Fard M., Mousavi M.: Two new high-performance cycles for gas turbine with air bottoming. Energy 36(2011), 294–304.
  • [23] Cáceres I.E., Montańés R.M., Nord L.O.: Flexible operation of combined cycle gas turbine power plants with supplementary firing. J. Power Technol. 98(2018), 9, 188–197.
  • [24] Díaz A.G., Sancheza E., Gonzalez Santalób J.M., Gibbinsa J., Lucquiaud M.: On the integration of sequential supplementary firing in natural gas combined cycle for CO2 – Enhanced Oil Recovery: A technoeconomic analysis for Mexico. Energy Proced. 63(2014), 7558–7567.
  • [25] González A., Sanchez E., Gibbins J.: Sequential supplementary firing in combined cycle power plant with carbon capture: Part-load operation scenarios in the context of EOR. Energy Proced. 114(2017), 1453–1468.
  • [26] Díaz A.G., Fernández E.S., Gibbins J., Lucquiaud M.: Sequential supplementary firing in natural gas combined cycle with carbon capture: A technology option for Mexico for low-carbon electricity generation and CO2 enhanced oil recovery. Environ. Int. Greenh. Gas Control 51(2020), 330–345.
  • [27] Arora B.B., Rai J.N., Hasan N.: Effect of supplementary heating on the performance of combined cycle. Environ. Int. Eng. Studies 4(2010), 2, 481–489.
  • [28] Fratzscher W.: The exergy method of thermal plant analysis. Environ. Int. Refrig. 20(1997), 5, 374–385.
  • [29] Szargut J.: Exergy Method: Technical and Ecological Applications. WIT Press, Southamptom 2005.
  • [30] Kotas T.J.: The Exergy Method of Thermal Plant Analysis. Butterworths, 1985.
  • [31] Szargut J.: International progress in second law analysis. Energy 5(1980), 8–9, 709–718.
  • [32] Ahmadi M.H., Alhuyi Nazari M., Sadeghzadeh M., Pourfayaz F., Ghazvini M., Ming T.: Thermodynamic and economic analysis of performance evaluation of all the thermal power plants: A review. Energy Sci Eng 7(2019), 30–65.
  • [33] Coskun C., Oktay Z., Ilten N.: A new approach for simplifying the calculation of flue gas specific heat and specific exergy value depending on fuel composition. Energy 34(2009), 11, 1898–1902.
  • [34] Sukanta K.D.: Engineering Equation Solver:Application to Engineering and Thermal Engineering Problem. Alpha Sci. Int., 2014.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2a6a72d2-59d7-461e-be46-9c057bfe4768
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.