Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aim of the article is to demonstrate the impact of the type of pumped oil on the values of kinematic excitations. Three groups of oils were examined: engine oils, hydraulic oils, and gear oils. The research methodology focused on measuring the average kinematic excitation and the dynamics of kinematic excitations for a fixed throttling pressure. The analysis of the results showed that the viscosity of the oil (ν) has a significant effect on the average kinematic excitation value (avg. R) in the group of oils intended for internal combustion engines, with p = 0.0285, while the influence of pressure (p) on avg. R was not statistically significant (p = 0.0799). However, for the dynamics of kinematic excitations (ΔR), pressure had a significant impact (p = 0.00001), while viscosity was not significant (p = 0.9490). In the groups of hydraulic and gear oils, none of the examined parameters showed a significant effect on avg. R. Pressure changes were significant only concerning ΔR in these groups. The highest ΔR values occurred at 0 bar pressure, indicating the influence of pressure on changes in kinematic excitations. It was also investigated that differences in the chemical composition of oils, although subtle, affect their physicochemical properties, which are important for cavitation occurrence and vibrations in the pump. Ultimately, selecting the appropriate oil, such as H2, significantly improves pump performance, which is crucial in hydraulic applications where operating pressure ranges from 100 to 300 bar.
Wydawca
Rocznik
Tom
Strony
142--155
Opis fizyczny
Bibliogr. 55 poz., fig., tab.
Twórcy
autor
- Institute of Machine Design, Faculty of Mechanical Engineering, Poznan University of Technology, Piotrowo 3, 60-965 Poznań
autor
- Institute of Machine Design, Faculty of Mechanical Engineering, Poznan University of Technology, Piotrowo 3, 60-965 Poznań
autor
- Department of Technological Equipment, Mechanical Engineering and Standardization, Abylkas Saginov Karaganda Technical University, Karaganda 100027, Kazakhstan
autor
- Institute of Machine Design, Faculty of Mechanical Engineering, Poznan University of Technology, Piotrowo 3, 60-965 Poznań
autor
- Institute of Machines and Motor Vehicles, Faculty of Civil Engineering and Transport, Poznan University of Technology, 60-965 Poznań, Poland
autor
- Institute of Machines and Motor Vehicles, Faculty of Civil Engineering and Transport, Poznan University of Technology, 60-965 Poznań, Poland
Bibliografia
- 1. Laaradj, S.H.; Abdelkader, L.; Mohamed, B.; Mourad, N. Vibration-based fault diagnosis of dynamic rotating systems for real-time maintenance monitoring. Int. J. Adv. Manuf. Technol. 2023, 126, 3283– 3296, https://doi.org/10.1007/s00170-023-11320-5
- 2. Casoli, P.; Pastori, M.; Scolari, F.; Rundo, M. A Vibration signal-based method for fault identification and classification in hydraulic axial piston pumps. Energies 2019, 12, 953, https://doi.org/10.3390/ en12050953
- 3. Zemanová, L.; Rudolf, P. Flow inside the sidewall gaps of hydraulic machines: A review. Energies 2020, 13, 6617, https://doi.org/10.3390/en13246617
- 4. Bianchini, A.; Rossi, J.; Antipodi, L. A Procedure for condition-based maintenance and diagnostics of submersible well pumps through vibration monitoring. Int. J. Syst. Assur. Eng. Manag. 2018, 9, 999– 1013, https://doi.org/10.1007/s13198-018-0711-3
- 5. Prajapati, A.; Bechtel, J.; Ganesan, S. Condition based maintenance: A survey. J. Qual. Maint. Eng. 2012, 18, 384–400, https://doi. org/10.1108/13552511211281552
- 6. Randall, R.B. Vibration-Based Condition Monitoring: Industrial, Automotive and Aerospace Applications; John Wiley & Sons, 2021.
- 7. Santos, I.F.; Nicoletti, R.; Scalabrin, A. Feasibility of applying active lubrication to reduce vibration in industrial compressors. J. Eng. Gas Turbines Power 2004, 126, 848–854, https://doi. org/10.1115/1.1765123
- 8. Xie, Z.; Yang, K.; Jiao, J.; Qin, W.; Yang, T.; Fu, C.; Ming, A. Transient nonlinear dynamics of the rotor system supported by low viscosity lubricated bearing. Chaos Interdiscip. J. Nonlinear Sci. 2022, 32,123111, https://doi.org/10.1063/5.0125258
- 9. George, S.; Balla, S.; Gautam, V.; Gautam, M. Effect of diesel soot on lubricant oil viscosity. Tribol. Int. 2007, 40, 809–818, https://doi.org/10.1016/j. triboint.2006.08.002
- 10. Miller, M.K.; Khalid, H.; Michael, P.W.; Guevremont, J.M.; Garelick, K.J.; Pollard, G.W.; Whitworth, A.J.; Devlin, M.T. An investigation of hydraulic motor efficiency and tribological Surface properties. Tribol. Trans. 2014, 57, 622–630, https:// doi.org/10.1080/10402004.2014.887167
- 11. Vladescu, S.; Lumby, R.; Gant, A.; Dyer, H.; Reddyhoff, T. Using lubricant composition to control friction-induced-vibration in an elastomer-steel contact representing a hydraulic seal. Tribol. Int. 2024, 110346, https://doi.org/10.1016/j. triboint.2024.110346
- 12. Bayatloo, M.; Koohizadhikoei, R.; Mahdi Ghorani, M.; Riasi, A.; Hamzehnava, G. Performance improvement of a pump running as turbine for energy recovery considering the effects of polimer additives: An experimental study. Sustain. Energy Technol. Assess. 2023, 57, 103232, https://doi. org/10.1016/j.seta.2023.103232
- 13. Li, W.-G. An Experimental study on the effect of oil viscosity and wear-ring clearance on the perfor- mance of an industrial centrifugal pump. J. Fluids Eng. 2012, 134, https://doi.org/10.1115/1.4005671
- 14. Zeidan, F.Y.; Andres, L.S.; Vance, J.M. Design and Application of Squeeze Film Dampers In Rotating Machinery. 1996.
- 15. Chu, F.; Zhang, Z. Periodic, Quasi-periodic and chaotic vibrations of a rub-impact rotor system supported on oil film bearings. Int. J. Eng. Sci. 1997, 35, 963–973, https://doi.org/10.1016/ S0020-7225(97)89393-7
- 16. Liping, W.; Dongya, Z.; Hongxing, W.; Youbai, X.; Guangneng, D. Effects of phosphorus-free antioxidants on oxidation stability and high-temperature tribological properties of lubricants. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2017, 231, 1527– 1536, https://doi.org/10.1177/1350650117700343
- 17. Zhuang, D.-D.; Zhang, S.-H.; Liu, H.-X.; Chen, J. Cavitation erosion behavior and anti-cavitation erosion mechanism of NiTi alloys impacted by water jet. Wear 2023, 518–519, 204631, https://doi. org/10.1016/j.wear.2023.204631
- 18. Mlela, M.K.; Xu, H.; Sun, F.; Wang, H.; Madenge, G.D. Material analysis and molecular dynamics simulation for cavitation erosion and corrosion suppression in water hydraulic valves. Materials 2020, 13, 453, https://doi.org/10.3390/ma13020453
- 19. Burlon, F.; Micheli, D.; Simonato, M.; Furlanetto, R. Experimental analysis of the influence of polimer solutions on performances and cavitation of small size pumps for professional appliances. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2021, 235, 3–11, https://doi.org/10.1177/0954408920938192
- 20. Riley, N.H. Lubricant Analysis as a Condition Monitoring Technique. In Handbook of Condition Monitoring: Techniques and Methodology; Davies, A., Ed.; Springer Netherlands: Dordrecht, 1998, 435–449.
- 21. Michael, P.; Cheekolu, M.; Panwar, P.; Devlin, M.; Davidson, R.; Johnson, D.; Martini, A. Temporary and permanent viscosity loss correlated to hydraulic system performance. Tribol. Trans. 2018, 61, 901–910, https://doi.org/10.1080/10402004.2018. 1439210
- 22. Markova, L.V.; Makarenko, V.M.; Kong, H.; Han, H.-G. Influence of viscosity modifiers on the rheological properties of synthetic oils. J. Frict. Wear 2014, 35, 351–358, https://doi.org/10.3103/ S1068366614050092
- 23. Ogunsola, O.; Shahid, J.B.; Michael, P. Effects of fluid properties on rod seal stick-slip mechanical and sound vibrations. Chem. Eng. Technol. 2023, 46, 80–85, https://doi.org/10.1002/ceat.202200383
- 24. Graham, D.R.; Higdon, J.J.L. Oscillatory forcing of flow through porous media. Part 2. Unsteady Flow. J. Fluid Mech. 2002, 465, 237–260, https:// doi.org/10.1017/S0022112002001143
- 25. Jakubek, B.; Barczewski, R. The influence of kinematic viscosity of a lubricant on broadband rolling bearing vibrations in amplitude terms. Diagnostyka 2019, 20(1), https://doi.org/10.29354/diag/100440
- 26. Eesa, M.; Barigou, M. CFD Analysis of viscous non-newtonian flow under the influence of a superimposed rotational vibration. Comput. Fluids 2008, 37, 24–34, https://doi.org/10.1016/j. compfluid.2007.03.015
- 27. Yang, L.; Hals, J.; Moan, T. Analysis of dynamic effects relevant for the wear damage in hydraulicmachines for wave energy conversion. Ocean Eng. 2010, 37, 1089–1102, https://doi.org/10.1016/j. oceaneng.2010.04.005
- 28. Rostek, E.; Babiak, M.; Wróblewski, E. The influence of oil pressure in the engine lubrication system on friction losses. Procedia Eng. 2017, 192, 771– 776, https://doi.org/10.1016/j.proeng.2017.06.133
- 29. Paredes, X.; Comuñas, M.J.P.; Pensado, A.S.; Bazile, J.-P.; Boned, C.; Fernández, J. High pressure viscosity characterization of four vegetable and mineral hydraulic oils. Ind. Crops Prod. 2014, 54, 281–290, https://doi.org/10.1016/j.indcrop.2014.01.030
- 30. Zhu, G.; He, L.; Jia, X.; Tan, Z.; Qin, Q. Experimental study on vibration and noise reduction of gear transmission system based on ISFD. Machines 2024, 12, 531, https://doi.org/10.3390/machines12080531
- 31. Anderson, J.E.; Kim, B.R.; Mueller, S.A.; Lofton, T.V. Composition and analysis of mineral oils and other organic compounds in metalworking and hydraulic fluids. Crit. Rev. Environ. Sci. Technol. 2003, 33, 73– 109, https://doi.org/10.1080/10643380390814460
- 32. Denniston, A.D. Hydraulic Fluids. In Kirk-Othmer Encyclopedia of Chemical Technology; John Wiley & Sons, Ltd, 2000.
- 33. McGhee, A.; Yang, J.; Bremer, E.C.; Xu, Z.; Cramer, H.C.; Estrada, J.B.; Henann, D.L.; Franck, C. High speed, full-field deformation measurements near inertial microcavitation bubbles inside viscoelastic hydrogels. Exp. Mech. 2023, 63, 63–78, https://doi. org/10.1007/s11340-022-00893-z
- 34. Katz, J. Cavitation phenomena within regions of flow separation. J. Fluid Mech. 1984, 140, 397–436, https://doi.org/10.1017/S0022112084000665
- 35. Carpenter, J.; George, S.; Saharan, V.K. Low pressure hydrodynamic cavitating device for producing highly stable oil in water emulsion: Effect of geometry and cavitation number. Chem. Eng. Process. org/10.1016/j.cep.2017.02.013
- 36. La Porta, A.; Voth, G.A.; Moisy, F.; Bodenschatz, E. Using cavitation to measure statistics of low-pressure events in large-Reynolds-number turbulence. Phys. Fluids 2000, 12, 1485–1496, https://doi. org/10.1063/1.870397
- 37. Hartog, D.J.P. Forced vibrations with combined coulomb and viscous friction. Trans. Am. Soc. Mech. Eng. 2023, 53, 107–115, https://doi. org/10.1115/1.4022656
- 38. Hujo, L.; Nosian, J.; Zastempowski, M.; Kosiba, J.; Kaszkowiak, J.; Michalides, M. Laboratory tests of the hydraulic pump operating load with monitoring of changes in the physical properties. Meas. Control 2021, 54, 243–251, https://doi. org/10.1177/0020294020983385
- 39. Novaković, B.; Radovanović, L.; Zuber, N.; Radosav, D.; Đorđević, L.; Kavalić, M. Analysis of the influence of hydraulic fluid quality on external gear pump performance. Eksploat. Niezawodn. 2022, 24, https://doi.org/10.17531/ein.2022.2.7
- 40. Solomon, B.R.; Khalil, K.S.; Varanasi, K.K. Drag reduction using lubricant-impregnated surfaces in viscous laminar flow. Langmuir 2014, 30, 10970– 10976, https://doi.org/10.1021/la5021143
- 41. Russell, T.W.F.; Charles, M.E. The effect of the less viscous liquid in the laminar flow of two immiscible liquids. Can. J. Chem. Eng. 1959, 37, 18–24, https:// doi.org/10.1002/cjce.5450370105
- 42. Liu, W.; Yang, Z.; Zhang, B.; Lv, P. Experimental study on the effects of mechanical vibration on the heat transfer characteristics of tubular laminar flow. Int. J. Heat Mass Transf. 2017, 115, 169–179, https:// doi.org/10.1016/j.ijheatmasstransfer.2017.07.025
- 43. Gong, F.; Nie, S.; Huang, Y.; Yin, F.; Hong, R.; Ji, H. Research on vibration reduction of direct-drive piston pump based on porous variable diameter helmholtz pulsation attenuator. J. Braz. Soc. Mech. Sci. Eng. 2022, 45, 33, https://doi.org/10.1007/ s40430-022-03967-0
- 44. Al-Obaidi, A.R. Investigation of effect of pump rotational speed on performance and detection of cavitation within a centrifugal pump using vibration analysis. Heliyon 2019, 5, https://doi.org/10.1016/j. heliyon.2019.e01910
- 45. Dong, W.; Dong, Y.; Sun, J.; Zhang, H.; Chen, D. Analysis of the internal flow characteristics, pressure pulsations, and radial force of a centrifugal pump under variable working conditions. Iran. J. Sci. Technol. Trans. Mech. Eng. 2023, 47, 397–415, https://doi.org/10.1007/s40997-022-00533-w
- 46. Shihab, T.A.; Shlapak, L.S.; Namer, N.S.; Prysyazhnyuk, P.M.; Ivanov, O.O.; Burda, M.J. Increasing of Durability of Mechanical Seals of Oil and Gas Centrifugal Pumps Using Tungsten-Free Cermet with Cu-Ni-Mn Binder. J. Phys. Conf. Ser. 2021, 1741, 012031, https://doi. org/10.1088/1742-6596/1741/1/012031
- 47. Hou, C.; Qian, J.; Chen, F.; Jiang, W.; Jin, Z. Parametric analysis on throttling components of multi-stage high pressure reducing valve. Appl. Therm. Eng. 2018, 128, 1238–1248, https://doi. org/10.1016/j.applthermaleng.2017.09.081
- 48. Gold, P.W.; Schmidt, A.; Dicke, H.; Loos, J.; Assmann, C. Viscosity–pressure–temperature behaviour of mineral and synthetic oils. J. Synth. Lubr. 2001, 18, 51–79, https://doi.org/10.1002/jsl.3000180105
- 49. Schaschke, C.J.; Allio, S.; Holmberg, E. Viscosity measurement of vegetable oil at high pressure. Food Bioprod. Process. 2006, 84, 173–178, https://doi. org/10.1205/fpb.05122
- 50. Yusuf, N.; Al-Wahaibi, Y.; Al-Wahaibi, T.; Al-Ajmi, A.; Olawale, A.S.; Mohammed, I.A. Effect of oil viscosity on the flow structure and pressure gradient in horizontal oil–water flow. Chem. Eng. Res. Des. 2012, 90, 1019–1030, https://doi.org/10.1016/j. cherd.2011.11.013
- 51. Baumann, A. Gear Rattling Noises from Vehicle Transmissions. In Minimizing of Automotive Transmission Rattle Noise by Means of Gear Oils: Lubrication for Improved Properties; Baumann, A., Ed.; Springer Fachmedien: Wiesbaden, 2023, 21–35.
- 52. Brancati, R.; Rocca, E.; Russo, R. A gear rattle model accounting for oil squeeze between the meshing gear teeth. Proc. Inst. Mech. Eng. Part J. Automob. Eng. 2005, 219, 1075–1083, https://doi. org/10.1243/095440705X34757
- 53. Tan, C.K.; Irving, P.; Mba, D. A comparative experimental study on the diagnostic and prognostic capabilities of acoustics emission, vibration and spectrometric oil analysis for spur gears. Mech. Syst. Signal Process. 2007, 21, 208–233, https:// doi.org/10.1016/j.ymssp.2005.09.015
- 54. Hebishy, E.; Zamora, A.; Buffa, M.; Blasco-Moreno, A.; Trujillo, A.-J. Characterization of whey protein oil-in-water emulsions with different oil concentrations stabilized by ultra-high pressure homogenization. Processes 2017, 5, 6, https://doi. org/10.3390/pr5010006
- 55. Torbacke, M.; Rudolphi, Å.K.; Kassfeldt, E. Lubricants: Introduction to Properties and Performance; John Wiley & Sons, 2014.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2a66b438-3087-4311-8227-c3c7dba45d3c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.