Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A dual parameter fiber optic sensor is proposed, which is based on a cascade single mode fiber (SMF)-capillary-no core fiber (NCF)-SMF (SCNS) structure. The sensor introduces a capillary to the conventional SMF-NCF-SMF (SNS) structure, which improves the excitation co-efficient of the higher order modes in the NCF. The optimized ZnO film thickness of the SCNS sensor is 100 nm by simulation, which can enhance the sensitivity of the sensor greatly. The experimental results show that the resonant wavelength has different sensitivities to NH3 concentration and temperature. The maximum NH3 concentration sensitivity is 35.52 pm/ppm, with a detection limit of 2.309 ppm, and the maximum temperature sensitivity is 25.85 pm/°C. Based on the different spectral responses, a cross-matrix is developed to enable the simultaneous measurement of temperature and NH3 concentration.
Czasopismo
Rocznik
Tom
Strony
63--76
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
- State Grid Anhui Electrical Power Research Institute, Hefei, China
autor
- State Grid Anhui Electrical Power Research Institute, Hefei, China
autor
- State Grid Anhui Electrical Power Research Institute, Hefei, China
autor
- Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai
autor
- Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai
Bibliografia
- [1] KWAK D., LEI Y., MARIC R., Ammonia gas sensors: A comprehensive review, Talanta 204, 2019: 713 -730. https://doi.org/10.1016/j.talanta.2019.06.034
- [2] XIONG Y., XU W., DING D., LU W., ZHU L., ZHU Z., WANG Y., XUE Q., Ultra-sensitive NH3 sensor based on flower-shaped SnS2 nanostructures with sub-ppm detection ability, Journal of Hazardous Materials 341, 2018: 159-167. https://doi.org/10.1016/j.jhazmat.2017.07.060
- [3] YU C.B., WU Y., LIU X.L., YAO B.C., FU F., GONG Y., RAO Y.J., CHEN Y.F., Graphene oxide deposited microfiber knot resonator for gas sensing, Optical Materials Express 6(3), 2016: 727-733. https://doi.org/10.1364/OME.6.000727
- [4] YEBO N.A., SREE S.P., LEVRAU E., DETAVERNIER C., HENS Z., MARTENS J.A., BAETS R., Selective and reversible ammonia gas detection with nanoporous film functionalized silicon photonic micro-ring resonator, Optics Express 20(11), 2012: 11855-11862. https://doi.org/10.1364/OE.20.011855
- [5] TIMMER B., OLTHUIS W., VAN DEN BERG A., Ammonia sensors and their applications—a review, Sensors and Actuators B: Chemical 107(2), 2005: 666-677. https://doi.org/10.1016/j.snb.2004.11.054
- [6] LIANG Q., LI D., GAO S., JIANG D., ZHAO J., QIN J., HOU J., Room-temperature NH3 sensors with high sensitivity and short response/recovery times, Chinese Science Bulletin 59, 2014: 447-451. https://doi.org/10.1007/s11434-013-0018-3
- [7] ASHRY I., MAO Y., WANG B., HVEDING F., BUKHAMSIN A.Y., NG T.K., OOI B.S., A review of distributed fiber–optic sensing in the oil and gas industry, Journal of Lightwave Technology 40(5), 2022: 1407-1431. https://doi.org/10.1109/JLT.2021.3135653
- [8] HAO T., CHIANG K.S., Graphene-based ammonia-gas sensor using in-fiber Mach-Zehnder interferometer, IEEE Photonics Technology Letters 29(23), 2017: 2035-2038. https://doi.org/10.1109/LPT.2017.2761981
- [9] RONG D., MENG G., FANG X., YOU L., DENG Z., Delafossite AgAlO2 modified long-period grating for highly-sensitive ammonia sensor, Optics Express 29(25), 2021: 42005-42019. https://doi.org/10.1364/OE.438177
- [10] YU C., WU Y., LIU X., FU F., GONG Y., RAO Y.-J., CHEN Y., Miniature fiber-optic NH3 gas sensor based on Pt nanoparticle-incorporated graphene oxide, Sensors and Actuators B: Chemical 244, 2017: 107-113. https://doi.org/10.1016/j.snb.2016.12.126
- [11] FU H., JIANG Y., DING J., ZHANG J., ZHANG M., ZHU Y., LI H., Zinc oxide nanoparticle incorporated graphene oxide as sensing coating for interferometric optical microfiber for ammonia gas detection, Sensors and Actuators B: Chemical 254, 2018: 239-247. https://doi.org/10.1016/j.snb.2017.06.067
- [12] ANSARI M., MORAVVEJ-FARSHI M.K., Dual-purpose optical fiber sensor: Relative humidity and ammonia detection, Optics Continuum 1(2), 2022: 335-344. https://doi.org/10.1364/OPTCON.450252
- [13] LI L., XUE M., MA Q., LIU X., GU X., XIU W., YANG X., LV M., Graphene/polyaniline film optical fiber ammonia gas sensor with excellent sensing performance, IEEE Sensors Journal 23(14), 2023: 15652-15659. https://doi.org/10.1109/JSEN.2023.3283963
- [14] ZHAO Y., ZHAO J., ZHAO Q., High sensitivity seawater temperature sensor based on no-core optical fiber, Optical Fiber Technology 54, 2020: 102115. https://doi.org/10.1016/j.yofte.2019.102115
- [15] ZEBIAN H.Y., H.J. TAHER H.J., Relative humidity sensor based on no-core multimode interferometer coated with Al2O3-PVA composite films, Optical Fiber Technology 54, 2020: 102110. https://doi.org/10.1016/j.yofte.2019.102110
- [16] HU H., SONG X., HAN Q., CHANG P., ZHANG J., LIU K., DU Y., WANG H., LIU T., High sensitivity fiber optic SPR refractive index sensor based on multimode-no-core-multimode structure, IEEE Sensors Journal 20(6), 2020: 2967-2975. https://doi.org/10.1109/JSEN.2019.2956559
- [17] RUSSELL P.ST.J., Photonic-crystal fibers, Journal of Lightwave Technology 24(12), 2006: 4729-4749. https://doi.org/10.1109/JLT.2006.885258
- [18] ZHANG X., SHAO H., YANG Y., PAN H., PANG F., WANG T., Refractometry with a Tailored sensitivity based on a single-mode-capillary-single-mode fiber structure, IEEE Photonics Journal 9(2), 2017: 6801908. https://doi.org/10.1109/JPHOT.2017.2690686
- [19] WU Q., SEMENOVA Y., WANG P., FARRELL G., High sensitivity SMS fiber structure based refractometer – analysis and experiment, Optics Express 19(9), 2011: 7937-7944. https://doi.org/10.1364/OE.19.007937
- [20] LI E.B., WANG X.L., ZHANG C., Fiber-optic temperature sensor based on interference of selective higher-order modes, Applied Physics Letters 89(9), 2006: 091119. https://doi.org/10.1063/1.2344835
- [21] ZHU Y., FU H.W., DING J.J., LI H.D., ZHANG M., ZHANG J., LIU Y.G., Fabrication of three-dimensional zinc oxide nanoflowers for high-sensitivity fiber-optic ammonia gas sensors, Applied Optics 57(27), 2018: 7924-7930. https://doi.org/10.1364/AO.57.007924
- [22] CHAUDHARY D.K., MAHARJAN Y.S., SHRESTHA S., MAHARJAN S., SHRESTHA S.P., JOSHI L.P., Sensing performance of a ZnO-based ammonia sensor, Journal of Physical Science 33(1), 2022: 97-108.
- [23] LIU Z.T., HUANG Y., ZHU F., HE Y.Y., DENG C.L., HU C.Y., ZHANG Q., DONG Y.H., ZHANG X.B., WANG T.Y., Simultaneous measurement of ammonia concentration and gas pressure based on fiber multi-mode and Fabry-Pérot interference, Optics Express 32(15), 2024: 25607-25618. https://doi.org/10.1364/OE.523067
- [24] HUANG S.Y., BLAKE J.N., KIM B.Y., Perturbation effects on mode propagation in highly elliptical core two-mode fibers, Journal of Lightwave Technology 8(1), 1990: 23-33. https://doi.org/10.1109/50.45925
- [25] XIONG R., MENG H., YAO Q., HUANG B., LIU Y., XUE H., TAN C., HUANG X., Simultaneous measurement of refractive index and temperature based on modal interference, IEEE Sensors Journal 14(8), 2014: 2524-2528. https://doi.org/10.1109/JSEN.2014.2310463
- [26] LIU S.D., YANG X.Z., FENG W.L., Hydrogen sulfide gas sensor based on copper/graphene oxide coated multi-node thin-core fiber interferometer, Applied Optics 58(9), 2019: 2152-2157. https://doi.org/10.1364/AO.58.002152
- [27] SAHA S., MEHAN N., SREENIVAS K., GUPTA V., Temperature dependent optical properties of (002) oriented ZnO thin film using surface plasmon resonance, Applied Physics Letters 95(7), 2009: 071106. https://doi.org/10.1063/1.3206954
- [28] HUANG Y., QIU H., DENG C.L., LIAN Z.G., YANG Y., YU Y., HU C.Y., DONG Y.H., SHANG Y.N., ZHANG X.B., WANG T.Y., Simultaneous measurement of magnetic field and temperature based on two anti-resonant modes in hollow core Bragg fiber, Optics Express 29(20), 2021: 32208-32219. https://doi.org/10.1364/OE.439444
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2a635e20-c296-43c1-9f26-0f0ba985bea8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.