PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessing Impact of Land Use/Land Cover Dynamic on Urban Climate Change in a Semi-Arid Region -Case Study of Agadir City (Morocco)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This research sought to assess historically the urban expansion of Agadir city in Morocco within the 35-year timespan (1984-2019), and the influence of those changes on the regulating services of Agadir. It was achieved by applying support vector machine supervised (SVM) algorithm on each Landsat products to derive land use/ land cover (LULC) maps. High accuracy assessment values were obtained for all Landsat classified maps. Spectral radiance model was exploited successfully to highlight the spatiotemporal changes of thermal behavior of city surfaces. Terrestrial carbon dynamics of Agadir LULC was evaluated by applying a process-based carbon model. The outcomes of this paper revealed an important urban expansion within the 35-year timespan with an important loss of vegetation and bare land. This urban evolution impacts the land surface temperature (LST) and caused carbon storage loss that contributes to local climate change. These findings could assist policy-makers to characterize a sustainable evolution of urban area, especially, to interpret how and where LULC changes might alter the dynamics of climate regulation and ecosystem services.
Twórcy
  • Geosciences, Environment and Geomatic Laboratory (GEG), Department of Geology, Faculty of Sciences, Ibnou Zohr University, B.P 8106, Agadir 80000, Morocco
autor
  • Geosciences, Environment and Geomatic Laboratory (GEG), Department of Geology, Faculty of Sciences, Ibnou Zohr University, B.P 8106, Agadir 80000, Morocco
  • Geosciences, Environment and Geomatic Laboratory (GEG), Department of Geology, Faculty of Sciences, Ibnou Zohr University, B.P 8106, Agadir 80000, Morocco
  • Geosciences, Environment and Geomatic Laboratory (GEG), Department of Geology, Faculty of Sciences, Ibnou Zohr University, B.P 8106, Agadir 80000, Morocco
  • Geosciences, Geotourism, Natural Hazards and Remote Sensing Laboratory (L2GRT), Department of Geology, Faculty of Sciences Semlalia, B.P. 2390, Marrakech 40000, Morocco
  • Department of Geography, Faculty of Human and Social Sciences, Ibn Tofail University, B.P 401, Kénitra 14000, Morocco
Bibliografia
  • 1. ABHSM. Situation Hydrologique. http://www.abhsm. ma/index.php/situation-hydrologique (April 8, 2019).
  • 2. Adeyeri, Oluwafemi E. et al. 2024. Land surface dynamics and meteorological forcings modulate land surface temperature characteristics. Sustainable Cities and Society 101(November 2023): 105072. https://doi.org/10.1016/j.scs.2023.105072
  • 3. Agence Urbaine Agadir. 2011. Plan D’amenagement d’Agadir.
  • 4. Avdan, U., Gordana Jovanovska G.. 2016. Algorithm for automated mapping of land surface temperature using LANDSAT 8 satellite data. Journal of Sensors, vol. 16, 8 pages, Article ID 1480307.
  • 5. Aydda, Ali, Omar F. Althuwaynee, Ahmed Algouti, and Abdellah Algouti. 2019. Evolution of Sand Encroachment using supervised classification of landsat data during the period 1987–2011 in a part of Laâyoune-Tarfaya basin of Morocco. Geocarto International, 34(13): 1514–29. http://dx.doi.org/10.1080/10106049.2018.1493154
  • 6. M. Ben Attou, Bouziane S. 2015. Agadir et Ses Espaces Ruraux Sous Influence Urbaine : Stratégies d’acteurs et Nouveaux Lieux Mondialisés. Cahiers de géographie du Québec 58(163): 93.
  • 7. Ben Attou, Mohamed. 2003. “Agadir gestion urbaine, stratégies d’acteurs et rôle de la société civile : urbanisme opérationnel ou urbanisme de fait?” Insaniyat (22): 37–58. http://journals.openedition.org/insaniyat/6881 (April 10, 2023).
  • 8. Kidou, B., Askassay K., Elamrani A., Hasna T., Guedil K., Atiki N. 2021. population urbaine et consommation d’eau dans une region semi-aride: cas du grand Agadir (Maroc). Geomaghreb 17: 58–72.
  • 9. Cao, Xiaomin, Xiaohong Gao, and Runxiang Li. 2024. Heliyon research on the spatial temporary evolution of urban expansion in xining city and its surrounding areas based on landsat time. Heliyon 10(3): e24846. https://doi.org/10.1016/j.heliyon.2024.e24846
  • 10. Chaddad, F. et al. 2022. Impact of mining-induced deforestation on soil surface temperature and carbon stocks: a case study using remote sensing in the amazon rainforest. Journal of South American Earth Sciences 119(2021): 103983.
  • 11. Chalchissa, F.B., Kuris B.K. 2024. Modelling soil organic carbon dynamics under extreme climate and land use and land cover changes in western oromia regional state, Ethiopia. Journal of environmental management 350(August 2023): 119598. https://doi.org/10.1016/j.jenvman.2023.119598
  • 12. Chen, Meiguirong. 2024. Impacts of Urbanization and Climate Change on Ecosystems in Asia: Challenges and Conservation Strategies. In: Third International Conference on Biological Engineering and Medical Science (ICBioMed2023), SPIE, 1063–67.
  • 13. Du, Chen et al. 2014. Split-window algorithm for estimating land surface temperature from Landsat 8 TIRS data. International Geoscience and Remote Sensing Symposium (IGARSS) (Ldcm): 3578–81.
  • 14. Manal El G., Amyay M., Lahrach A., Oulidi H.J. 2021. Land surface temperature in response to land use/cover change based on remote sensing data and GIS techniques: application to saïss plain, Morocco. Journal of Ecological Engineering 22(7): 100–112.
  • 15. HCP. 2014. Recensement général de la population et de l’habitat 2014 (RGPH2014). Recensement général de la population et de l’habitat. https://rgph2014. hcp.ma/downloads/Resultats-RGPH-2014_t18649.html (December 26, 2019).
  • 16. HCP. 2020. Monographie de La Région de Souss Massa. Agadir, Maroc.
  • 17. Hong, W. et al. 2024. Spatiotemporal changes in urban forest carbon sequestration capacity and its potential drivers in an urban agglomeration: implications for urban CO 2 emission mitigation under China’ s rapid urbanization. Ecological Indicators 159(October 2023): 111601. https://doi.org/10.1016/j.ecolind.2024.111601
  • 18. Idoumskine, I., Aydda A., Ezaidi A., Omar F. Althuwaynee. 2022. Assessing land use/land cover change using multitemporal landsat data in Agadir City (Morocco): 337–50.
  • 19. Benazeer B., Ali. M. 2022. Estimation of spatiotemporal air temperature from satellite based LST under semi-arid to arid environment in Peshawar Basin, Northwest Pakistan. Advances in Space Research 70(4): 961–75.
  • 20. Jiang, W. et al. 2017. Modelling the potential impacts of urban ecosystem changes on carbon storage under different scenarios by linking the CLUE-S and the InVEST models. Ecological Modelling 345: 30–40. http://dx.doi.org/10.1016/j.ecolmodel.2016.12.002
  • 21. Jiang, Y., Lin W., Di Xu, Dan Xu. 2023. Spatio-temporal variation of the relationship between air pollutants and land surface temperature in the Yangtze river delta urban agglomeration, China. Sustainable Cities and Society 91(December 2021).
  • 22. Kumar, B.Pradeep, K.Raghu Babu, B.N. Anusha, Rajasekhar. M. 2022. Geo-environmental monitoring and assessment of land degradation and desertification in the semi-arid regions using Landsat 8 OLI / TIRS, LST, and NDVI approach. Environmental Challenges 8(December 2021).
  • 23. Kusi, K.K., Khattabi A., Nadia Mhammdi, Lahssini S. 2020. Prospective evaluation of the impact of land use change on ecosystem services in the Ourika watershed, Morocco. Land Use Policy 97(July 2019): 104796. https://doi.org/10.1016/j.landusepol.2020.104796
  • 24. Lin, J., Wei K., Guan Z. 2024. Exploring the connection between morphological characteristic of built-up areas and surface heat islands based on MSPA. Urban Climate 53(October 2023): 101764. https://doi.org/10.1016/j.uclim.2023.101764
  • 25. Mandle, L. et al. 2016. OPAL: An open-source software tool for integrating biodiversity and ecosystem services into impact assessment and mitigation decisions. Environmental Modelling and Software 84: 121–33. http://dx.doi.org/10.1016/j.envsoft.2016.06.008
  • 26. Min, M. et al. 2019. Spatial distribution and driving force analysis of urban heat island effect based on raster data: a case study of the Nanjing metropolitan area, China. Sustainable Cities and Society 50(December 2018): 101637. https://doi.org/10.1016/j.scs.2019.101637
  • 27. Hassan M. et al. 2024. Improved soil carbon stock spatial prediction in a mediterranean soil erosion site through robust machine learning techniques. Environmental Monitoring and Assessment 196(2): 130. https://doi.org/10.1007/s10661-024-12294-x
  • 28. Moussadek, R. et al. 2014. Tillage system affects soil organic carbon storage and quality in central Morocco. Applied and Environmental Soil Science 2014.
  • 29. Nel, L. et al. 2022. InVEST Soil carbon stock modelling of agricultural landscapes as an ecosystem service indicator. Sustainability (Switzerland) 14(16): 1–19.
  • 30. SC Nguemhe Fils et al. 2018. TM/ETM+/LDCM images for studying land surface temperature (LST) interplay with impervious surfaces changes over time within the Douala metropolis, Cameroon. Journal of the Indian Society of Remote Sensing 46(1): 131–43.
  • 31. Orhan, O., Yakara M. 2016. Investigating land surface temperature changes using Landsat data in Konya, Turkey. In: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences-ISPRS Archives, 285–89.
  • 32. Pannunzio, M. et al. 2024. Remote sensing applications: society and environment impacts of urban landscape pattern changes on land surface temperature in southeast Brazil. Remote Sensing Applications: Society and Environment 33(January): 101142. https://doi.org/10.1016/j.rsase.2024.101142
  • 33. Patel, S., Indraganti M., Jawarneh Rana N. 2024. A comprehensive systematic review: impact of land use/land cover (LULC) on land surface temperatures (LST) and outdoor thermal comfort. Building and Environment 249(August 2023): 111130.
  • 34. Piyathilake, I.D.U.H., Udayakumara E. P.N., Ranaweera L.V., Gunatilake S.K. 2022. Modeling predictive assessment of carbon storage using InVEST model in uva province, Sri Lanka. Modeling Earth Systems and Environment 8(2): 2213–23. https://doi.org/10.1007/s40808-021-01207-3
  • 35. Presentation of the Region | Souss Massa Region. https://www.soussmassa.ma/en/presentation-region (April 8,2023).
  • 36. Qi, Xiao lian et al. 2022. Effects of climate change, coal mining and grazing on vegetation dynamics in the mountain permafrost regions. Ecological Informatics 69: 101684.
  • 37. Rahimi, A. et al. 2021. Land surface temperature responses to land use land cover dynamics (District of Taroudant, Morocco). In Biology and Life Sciences Forum, MDPI, 28.
  • 38. Sharp, R. et al. 2016. InVEST User’s Guide. The Natural Capital Project. Stanford university, university of Minnesota, the nature conservancy, and World Wildlife Fund: 371.
  • 39. Sheik Mujabar, P. 2019. Spatial-temporal variation of land surface temperature of jubail industrial city, saudi arabia due to seasonal effect by using thermal infrared remote sensor (TIRS) satellite data. Journal of African Earth Sciences 155(March 2019): 54–63. https://doi.org/10.1016/j.jafrearsci.2019.03.008
  • 40. Sobrino, J.A. et al. 2004. Single-channel and two-channel methods for land surface temperature retrieval from DAIS data and its application to the barrax site. International Journal of Remote Sensing 25(1): 215–30.
  • 41. Tao, S., Song L., Zhao G., Zhao L. 2024. Simulation and assessment of daily evapotranspiration in the Heihe river basin over a long time series based on TSEB-SM. Remote Sensing 16(3): 462.
  • 42. Verma, P., Siddiqui A.R., Mourya N.K., Devi A.R. 2024. Forest carbon sequestration mapping and economic quantification infusing MLPnn-Markov Chain and InVEST carbon model in askot wildlife sanctuary, Western Himalaya. Ecological Informatics 79(August 2023): 102428. https://doi.org/10.1016/j.ecoinf.2023.102428
  • 43. Wan, C. et al. 2024. DBPF-Net: dual-branch structural feature extraction reinforcement network for ocular surface disease image classification. Frontiers in Medicine 10: 1309097.
  • 44. WorldClim. 2020. Global climate and weather data. Global climate and weather data. https://www.worldclim.org/data/index.html (February 18, 2023).
  • 45. Xiao, J. et al. 2019. Remote sensing of the terrestrial carbon cycle: a review of advances over 50 years. Remote Sensing of Environment 233(August).
  • 46. Zhang, F. et al. 2017. Impacts of land use/cover change on terrestrial carbon stocks in Uganda. Physics and Chemistry of the Earth 101: 195–203. http://dx.doi.org/10.1016/j.pce.2017.03.005
  • 47. Zhao, M. et al. 2019. Assessing the effects of ecological engineering on carbon storage by linking the CA-Markov and InVEST models. Ecological Indicators 98(September 2018): 29–38. https://doi.org/10.1016/j.ecolind.2018.10.052
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2a5ba1ea-5967-4cd0-8b14-a950473e13ee
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.