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INTRODUCTION

As stated in the Global Urbanization Fore-
casts presented by the United Nations in 2018, 
the worldwide demographic trends in cities will 
reach 68% by the end of 2050 with an accentuated 
growth in Asia and Africa [Chen 2024]. The rapid 
growth of populations and their activities increased 
the greenhouse gas concentration in the Earth’s at-
mosphere [Qi et al. 2022]. In general, the unsus-
tainable evolution of the human activities has a di-
rect consequence on the ambient atmospheric con-
ditions that affects the ecosystem services. Thus, 
scrutinizing the reciprocal impact of land use/land 
cover (LULC) transformations on micro-climate 

play a crucial role in accelerating transformations 
toward renewable development and mitigating 
Earth’s atmosphere balance. Hence, two known 
parameters of the earth climate system are wide-
ly used to assess and monitor the effect of LULC 
changes namely, Land Surface Temperature (LST) 
and terrestrial carbon storage [Xiao et al. 2019].

LST is defined as the thermal behavior of a 
terrestrial surface and it is affected the anthropo-
genic activities that convert natural landscapes 
into impermeable surfaces [Adeyeri et al. 2024]. 
As listed by [Patel, Indraganti, and Jawarneh 
2024], a variety of methodologies have been es-
tablished and employed for extracting LST from 
remote sensing datasets, namely Physiologically 
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Equivalent Temperature (PET, universal thermal 
climate index (UTCI), and Surface Urban Heat 
Island Intensity (SUHII).

In fact, many scholarly inquiries have ex-
plored how changes in LULC patterns affect LST. 
[Orhan and Yakara 2016] investigated the corre-
lation between alterations in vegetation and LST 
rates. Their study emphasized that agriculture 
activities in Konya, Turkey, contributed to about 
5°C temperature increase between 1984 and 2014. 
[Nguemhe Fils et al. 2018] used multi-temporal 
Landsat scenes to conclude a continuous increase 
in linear link between LST and impervious areas 
in Douala Metropolis, Cameroon, from 1986 to 
2016. [Sheik Mujabar 2019] revealed a signifi-
cant difference in recorded temperature over an 
industrial city in Saudi Arabia, utilizing thermal 
infrared remote sensor (TIRS) data. He reported 
that the temperature in residential area ranges be-
tween 40°C and 50°C for summer, while in sub-
urban areas it is moderate and in industrial area 
goes from 50°C to 55°C during the entire study 
period. In addition, he highlighted that tempera-
tures more of than 60°C are recorded in the indus-
trial facilities producing iron and steel. 

Furthermore, the Integrated Valuation of Eco-
system Services and Tradeoffs (InVEST) algo-
rithm deemed to be the simplest and most reliable 
tools for estimating the quantity of stored carbon 
[Verma et al. 2024]. The primary purpose of this 
model is to determine ecosystem carbon storage. 
It achieves this by multiplying mean density of 
carbon in reserves, namely living biomass (above 
and below ground), soil, litter and dead organic 
matter, for each LULC class with their corre-
sponding areas, following the methodology pro-
posed by [Mandle et al. 2016].

The research literature devoted to examin-
ing how urban growth affect ecosystem carbon 
reserves is extensive [W. Jiang et al. 2017; Verma 
et al. 2024]. Yet, only handful made use of the In-
VEST tool. The model was utilized by [Zhang et 
al. 2017] to monitor and assess the effects of shifts 
in land occupation on land-based carbon reservoirs 
in Uganda between 2006 and 2010. Outcomes in-
dicated a reduction of approximately 29.1% in the 
sum total of carbon stocks across Uganda, averag-
ing an annual decrease of about 7.3%. An integrated 
approach involving the Cellular Automata-Markov 
and InVEST tool was used by [Zhao et al. 2019] 
to evaluate the contribution of eco-friendly engi-
neering to carbon sequestration in the Heihe Riv-
er watershed in Northwest China. The developed 

methodology, with a relative error of 0.22%, pre-
dicts these circumstances will contribute to a sig-
nificant upsurge in carbon preservation by 10.27 Tg 
from 2015 to 2029 within the studied area. [Hong et 
al. 2024] examined the carbon sequestration poten-
tial of urban forests in the Harbin-Changchun urban 
agglomeration from 2000 to 2020. The researchers 
emphasized a gradual increase in carbon sequestra-
tion capacity, particularly in large built-up areas.

In Morocco, studies have attempted to discern 
LULC impacts on LST [Garouani et al. 2021; Ra-
himi et al. 2021] and carbon safeguarding patterns 
[Mosaid et al. 2024; Moussadek et al. 2014] uti-
lizing multi-temporal remote sensing data and fo-
cusing on the aspects related to urbanization. Nei-
ther of the aforementioned studies analyzed the 
impact of the land occupation on surface thermal 
and terrestrial carbon stocks conjunctly. Despite 
growing concerns regarding LULC changes and 
its effects on the global ecosystem and its sustain-
able development, the urban growth of cities in 
southern Morocco are less broadly studied. Thus, 
only few attempts have been made to study the 
LULC change of Agadir city in the Souss Massa 
region [Idoumskine et al. 2022].

Notably, this study represents the first com-
prehensive investigation into the environmental 
challenges facing Agadir city. This deficiency 
serves as the cornerstone of the conducted re-
search, aiming to address the question of how 
LULC changes impact the local climate-related 
challenges by examining the correlation between 
both LST and terrestrial carbon dynamics and ur-
ban development patterns in Agadir city over the 
period spanning from 1984 to 2019. This exami-
nation is undertaken through a comprehensive ap-
proach that involves:
 • extraction of LULC change data from Landsat 

products, utilizing the support vector machine 
SVM algorithm.

 • evaluation of the spatial variations in Land 
Surface Temperature (LST) derived from the 
thermal bands of Landsat imagery.

 • the identification of carbon stocks and sequestra-
tion levels to elucidate their dynamic responses to 
urbanization and land use transformations. 

STUDY AREA

Agadir city is located on the Souss plateau at 
latitude 30° 25′ North and longitude 9° 36′ West 
along the Atlantic Ocean (Figure 1). The prevailing 
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climate is semi-arid with mainly Mediterranean 
oceanic influences characterized by a hot summer 
season (maximum temperature is recorded in July 
and August) and a cool winter season (January is 
the coldest month). The mean temperatures range 
between 20.04 and 26.04°C throughout the year 
with the highest in September and the lowest in 
January [WorldClim 2020]. With an mean yearly 
rainfall of 291.9 mm, the rain falls in Agadir for 
39.4 days and the wettest month is December (60.7 
mm) while the driest month is July (0.1 mm) [AB-
HSM n.d.].  According to [HCP 2014], Agadir con-
tains 421 844 inhabitants spread across an area of 
112 km². Historically, Agadir showed a significant 
demographic growth. Its population escalated from 
110479 inhabitants in 1982 to 203000 inhabitants in 
2006 [Brahim et al. 2021]. The total superficies of 
the city is subdivided in 13 districts and it includes 
residential areas, industrial areas, touristic areas and 
the port facilities [Agence Urbaine Agadir 2011]. 
The development economy of Agadir city is based 
on three sectors, namely fishing industry, tourism, 
as well as industrial and commercial.

The city is known as a tourist destination of ex-
cellence and a seaside resort of choice, the Agadir Re-
gional Tourism Council (CRT) recorded an excess of 
5,300.000 overnight stays in. In other hands, the de-
veloped infrastructures of the port of Agadir, the fish-
ery sector (coastal, deep sea and artisanal) provides 

a total of 660 000 direct and indirect employments, 
and it produces 36% of the national added value. 
These statistics are increased with the installation of 
the first Halieutic pole in Morocco named ‘Haliopo-
lis’. The industrial zone of Agadir city employs more 
than 33 000 people and comprises more than 138 op-
erational industrial units. The sector of commerce in 
Agadir is endowed with one of the largest urban mar-
kets in Morocco and Africa, the Souk El Had market 
covers an area of 9 ha, with more than 2 000 shops 
and 1 200 outlets and its visitors exceeds 50 000 in a 
normal day [HCP. 2020].

MATERIAL AND METHODOLOGY

Dataset

Three Landsat 5 scenes captured in 29th July 
1984, 11th July 1994 and 4th June 2004, and two 
Landsat 8 images taken in 2nd July 2014 and 30th 
June 2019 were utilized within this paper. All im-
ages were obtained from Earth Explorer website 
provided by USGS website. Other Auxiliary data 
were employed, namely, shapefile of the admin-
istrative limits of the city, historical images of 
Google earth and climate data (air temperature 
and humidity) sourced from global climate and 
weather records [WorldClim 2020].

Figure 1. Localization of the Agadir city
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Methodology 

As mentioned in the following sections, the 
process of this study will be described in three 
principal sections. The first one consists of pre-
paring all Landsat scenes downloaded for the 
years 1984, 1994, 2004, 2014 and 2019. Then, 
the study field has been subseted from the cor-
rected scenes using a shapefile in which the city is 
included. The second section is about estimating 
normalized indices – normalized difference veg-
etation index (NDVI) and normalized difference 
built up index (NDBI)) and developing the LULC 
change maps of the study years. SVM classifier 
was used, which requires Global positioning sys-
tem (GPS) points as training samples for the clas-
sification process and others as ground truth (GT) 
for validation. The third section consists of re-
trieving the LST using thermal bands of the used 
Landsat products. Finally, the terrestrial carbon 
model developed by the InVEST was performed 
by considering the values of three carbon pools 
for each LULC class obtained from literature re-
views. Figure 2 illustrates the research approach 
utilized in this study.

Data pre-processing

All Landsat scenes of the above-mentioned 
dates consisted of Level-One Terrain data (L1T), 
which are orthorectified and radiometrically cali-
brated [Cao, Gao, and Li 2024]. However, atmo-
spheric conditions of each Landsat scene might be 

different since they were taken on different dates. 
Hence, fast line-of-sight atmospheric analysis of 
hypercubes (FLAASH) algorithm was executed 
on spectral bands of each satellite scene in order 
to enhance it atmospherically. Further, histogram 
equalization and resampling techniques have 
been performed to enhance the quality of the pre-
processed images and to bring all images to the 
same pixel resolution, respectively.

Derivation of LULC maps and normalized indices

First, the obtained images from the pre-pro-
cessing step are used to create LULC maps by ap-
plying the SVM algorithm as a supervised clas-
sifier using training samples obtained through 
field survey and observation of Google Earth ar-
chives. The SVM algorithm was chosen, because 
it performs better than other classical ones, such 
as maximum likelihood and minimum distance 
[Aydda et al. 2019]. As shown in Table 1, four 
LULC classifications were studied in this paper. 
Secondly, NDVI and NDBI were calculated. Both 
indices range among −1 and +1. Positive NDVI in-
dicates high to moderate green surface, while they 
emphasize urbanized areas and bare lands covered 
by more than 5% of earthen material for NDBI. 
On the other hands, negative values of NDVI ex-
press the absence of vegetation and domination of 
constructed materials or water bodies, while they 
represent water bodies and areas with vegetation 
area for the NDBI [Idoumskine et al. 2022]. Each 
index was calculated using Eq. 1 and Eq. 2. 

Figure 2. Workflow of the study



176

Ecological Engineering & Environmental Technology 2024, 25(4), 172–187

 NDVI = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 𝑏𝑏𝑁𝑁𝑖𝑖𝑖𝑖−𝑅𝑅𝑁𝑁𝑖𝑖 𝑏𝑏𝑁𝑁𝑖𝑖𝑖𝑖 
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 𝑏𝑏𝑁𝑁𝑖𝑖𝑖𝑖+𝑅𝑅𝑁𝑁𝑖𝑖 𝑏𝑏𝑁𝑁𝑖𝑖𝑖𝑖     (1) 

 
NDBI = 𝑆𝑆ℎ𝑜𝑜𝑁𝑁𝑜𝑜 𝑤𝑤𝑁𝑁𝑤𝑤𝑁𝑁 𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 𝑏𝑏𝑁𝑁𝑖𝑖𝑖𝑖−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 𝑏𝑏𝑁𝑁𝑖𝑖𝑖𝑖

𝑆𝑆ℎ𝑜𝑜𝑁𝑁𝑜𝑜 𝑤𝑤𝑁𝑁𝑤𝑤𝑁𝑁 𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 𝑏𝑏𝑁𝑁𝑖𝑖𝑖𝑖−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 𝑏𝑏𝑁𝑁𝑖𝑖𝑖𝑖  (2) 
 
 
𝐿𝐿𝜆𝜆 = (𝐿𝐿𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆− 𝐿𝐿𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆

𝑄𝑄𝐶𝐶𝑎𝑎𝑎𝑎𝜆𝜆𝑎𝑎𝜆𝜆
) 𝑄𝑄𝐶𝐶𝑁𝑁𝐶𝐶 +  𝐿𝐿𝜆𝜆𝜆𝜆𝜆𝜆𝑁𝑁    (3) 

 
 
𝐿𝐿𝜆𝜆1 = 𝑀𝑀𝐿𝐿 · 𝑄𝑄𝑐𝑐𝑁𝑁𝐶𝐶 + 𝐴𝐴𝐿𝐿     (4) 
 
 

𝑇𝑇𝑠𝑠𝑁𝑁𝑜𝑜 = ( 𝐾𝐾2

𝐶𝐶𝑖𝑖(𝐾𝐾1
𝐿𝐿𝜆𝜆

+1)
) −  273.15 °C    (5)  

 
 
𝜀𝜀 = 𝑚𝑚 · 𝑃𝑃𝑤𝑤 + 𝑛𝑛     (6) 
 
 
𝑃𝑃𝑤𝑤 = [ (NDVI−NDVImin )

(NDVImax−NDVImin )
] ²    (7) 

 
 

LST =  [ 𝑇𝑇𝑠𝑠𝑎𝑎𝑠𝑠
1+(𝜆𝜆× 𝑇𝑇𝑠𝑠𝑎𝑎𝑠𝑠

𝜌𝜌 )×𝐶𝐶𝑖𝑖( 𝜀𝜀)
]   (8) 
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Eq. (4) for TIRS bands [Y. Jiang et al. 2023]:
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𝑆𝑆ℎ𝑜𝑜𝑁𝑁𝑜𝑜 𝑤𝑤𝑁𝑁𝑤𝑤𝑁𝑁 𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 𝑏𝑏𝑁𝑁𝑖𝑖𝑖𝑖−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 𝑏𝑏𝑁𝑁𝑖𝑖𝑖𝑖  (2) 
 
 
𝐿𝐿𝜆𝜆 = (𝐿𝐿𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆− 𝐿𝐿𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆

𝑄𝑄𝐶𝐶𝑎𝑎𝑎𝑎𝜆𝜆𝑎𝑎𝜆𝜆
) 𝑄𝑄𝐶𝐶𝑁𝑁𝐶𝐶 +  𝐿𝐿𝜆𝜆𝜆𝜆𝜆𝜆𝑁𝑁    (3) 

 
 
𝐿𝐿𝜆𝜆1 = 𝑀𝑀𝐿𝐿 · 𝑄𝑄𝑐𝑐𝑁𝑁𝐶𝐶 + 𝐴𝐴𝐿𝐿     (4) 
 
 

𝑇𝑇𝑠𝑠𝑁𝑁𝑜𝑜 = ( 𝐾𝐾2

𝐶𝐶𝑖𝑖(𝐾𝐾1
𝐿𝐿𝜆𝜆

+1)
) −  273.15 °C    (5)  

 
 
𝜀𝜀 = 𝑚𝑚 · 𝑃𝑃𝑤𝑤 + 𝑛𝑛     (6) 
 
 
𝑃𝑃𝑤𝑤 = [ (NDVI−NDVImin )

(NDVImax−NDVImin )
] ²    (7) 

 
 

LST =  [ 𝑇𝑇𝑠𝑠𝑎𝑎𝑠𝑠
1+(𝜆𝜆× 𝑇𝑇𝑠𝑠𝑎𝑎𝑠𝑠

𝜌𝜌 )×𝐶𝐶𝑖𝑖( 𝜀𝜀)
]   (8) 

 

 (3)

 

NDVI = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 𝑏𝑏𝑁𝑁𝑖𝑖𝑖𝑖−𝑅𝑅𝑁𝑁𝑖𝑖 𝑏𝑏𝑁𝑁𝑖𝑖𝑖𝑖 
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 𝑏𝑏𝑁𝑁𝑖𝑖𝑖𝑖+𝑅𝑅𝑁𝑁𝑖𝑖 𝑏𝑏𝑁𝑁𝑖𝑖𝑖𝑖     (1) 

 
NDBI = 𝑆𝑆ℎ𝑜𝑜𝑁𝑁𝑜𝑜 𝑤𝑤𝑁𝑁𝑤𝑤𝑁𝑁 𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 𝑏𝑏𝑁𝑁𝑖𝑖𝑖𝑖−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 𝑏𝑏𝑁𝑁𝑖𝑖𝑖𝑖

𝑆𝑆ℎ𝑜𝑜𝑁𝑁𝑜𝑜 𝑤𝑤𝑁𝑁𝑤𝑤𝑁𝑁 𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 𝑏𝑏𝑁𝑁𝑖𝑖𝑖𝑖−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 𝑏𝑏𝑁𝑁𝑖𝑖𝑖𝑖  (2) 
 
 
𝐿𝐿𝜆𝜆 = (𝐿𝐿𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆− 𝐿𝐿𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆

𝑄𝑄𝐶𝐶𝑎𝑎𝑎𝑎𝜆𝜆𝑎𝑎𝜆𝜆
) 𝑄𝑄𝐶𝐶𝑁𝑁𝐶𝐶 +  𝐿𝐿𝜆𝜆𝜆𝜆𝜆𝜆𝑁𝑁    (3) 

 
 
𝐿𝐿𝜆𝜆1 = 𝑀𝑀𝐿𝐿 · 𝑄𝑄𝑐𝑐𝑁𝑁𝐶𝐶 + 𝐴𝐴𝐿𝐿     (4) 
 
 

𝑇𝑇𝑠𝑠𝑁𝑁𝑜𝑜 = ( 𝐾𝐾2

𝐶𝐶𝑖𝑖(𝐾𝐾1
𝐿𝐿𝜆𝜆

+1)
) −  273.15 °C    (5)  

 
 
𝜀𝜀 = 𝑚𝑚 · 𝑃𝑃𝑤𝑤 + 𝑛𝑛     (6) 
 
 
𝑃𝑃𝑤𝑤 = [ (NDVI−NDVImin )

(NDVImax−NDVImin )
] ²    (7) 

 
 

LST =  [ 𝑇𝑇𝑠𝑠𝑎𝑎𝑠𝑠
1+(𝜆𝜆× 𝑇𝑇𝑠𝑠𝑎𝑎𝑠𝑠

𝜌𝜌 )×𝐶𝐶𝑖𝑖( 𝜀𝜀)
]   (8) 

 

 (4)

where: Lλ and Lλ1 are the TOP spectral brightness 
in W/ (m²/sr/mm) of TM and TIRS ther-
mal bands, respectively. Lλmax and Lλmin are 
the highest value and the lowest value of 
spectral radiance, respectively. (QCalMAX) 
is the highest quantized calibrated infor-
mation of pixel (QCal). ML and AL are the 
radiance multiplier and the radiance sup-
plement scaling element for each TIRS 
wavelength, respectively. 

Subsequently, the effective factor at-satellite 
(brightness temperature) which is the sensor-
measured apparent temperature of the surface was 
derived from TOA radiance by applying the in-
verted Planck’s Law [Lin, Wei, and Guan 2024]. 
According to [Lin, Wei, and Guan 2024], the Eq. 
5 was used for both Landsat products, by using 
the TOA spectral radiance obtained from the Eq. 
3, and the TOA spectral radiance calculated using 
Eq. 4. The formula of conversion is as following:

 

NDVI = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 𝑏𝑏𝑁𝑁𝑖𝑖𝑖𝑖−𝑅𝑅𝑁𝑁𝑖𝑖 𝑏𝑏𝑁𝑁𝑖𝑖𝑖𝑖 
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 𝑏𝑏𝑁𝑁𝑖𝑖𝑖𝑖+𝑅𝑅𝑁𝑁𝑖𝑖 𝑏𝑏𝑁𝑁𝑖𝑖𝑖𝑖     (1) 

 
NDBI = 𝑆𝑆ℎ𝑜𝑜𝑁𝑁𝑜𝑜 𝑤𝑤𝑁𝑁𝑤𝑤𝑁𝑁 𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 𝑏𝑏𝑁𝑁𝑖𝑖𝑖𝑖−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 𝑏𝑏𝑁𝑁𝑖𝑖𝑖𝑖

𝑆𝑆ℎ𝑜𝑜𝑁𝑁𝑜𝑜 𝑤𝑤𝑁𝑁𝑤𝑤𝑁𝑁 𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 𝑏𝑏𝑁𝑁𝑖𝑖𝑖𝑖−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 𝑏𝑏𝑁𝑁𝑖𝑖𝑖𝑖  (2) 
 
 
𝐿𝐿𝜆𝜆 = (𝐿𝐿𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆− 𝐿𝐿𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆

𝑄𝑄𝐶𝐶𝑎𝑎𝑎𝑎𝜆𝜆𝑎𝑎𝜆𝜆
) 𝑄𝑄𝐶𝐶𝑁𝑁𝐶𝐶 +  𝐿𝐿𝜆𝜆𝜆𝜆𝜆𝜆𝑁𝑁    (3) 

 
 
𝐿𝐿𝜆𝜆1 = 𝑀𝑀𝐿𝐿 · 𝑄𝑄𝑐𝑐𝑁𝑁𝐶𝐶 + 𝐴𝐴𝐿𝐿     (4) 
 
 

𝑇𝑇𝑠𝑠𝑁𝑁𝑜𝑜 = ( 𝐾𝐾2

𝐶𝐶𝑖𝑖(𝐾𝐾1
𝐿𝐿𝜆𝜆

+1)
) −  273.15 °C    (5)  

 
 
𝜀𝜀 = 𝑚𝑚 · 𝑃𝑃𝑤𝑤 + 𝑛𝑛     (6) 
 
 
𝑃𝑃𝑤𝑤 = [ (NDVI−NDVImin )

(NDVImax−NDVImin )
] ²    (7) 

 
 

LST =  [ 𝑇𝑇𝑠𝑠𝑎𝑎𝑠𝑠
1+(𝜆𝜆× 𝑇𝑇𝑠𝑠𝑎𝑎𝑠𝑠

𝜌𝜌 )×𝐶𝐶𝑖𝑖( 𝜀𝜀)
]   (8) 

 

 (5) 

where: the effective at-satellite temperature is ex-
pressed by Tsat, K1 and K2 are fixed values of 
the prelaunch calibration (Table 2), and the 
TOA spectral radiance is indicated by Lλ in 

W/(m²/r/μm). The Tsat is converted from the 
Kelvin (K) to Celsius (°C) by multiplying it 
by −273.15 [Avdan and Jovanovska 2016].

To retrieve the LST, land surface emissivity 
(LSE) was computed utilizing the emissivity de-
scribed by [Sobrino et al. 2004] (Equation 6):

 

NDVI = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 𝑏𝑏𝑁𝑁𝑖𝑖𝑖𝑖−𝑅𝑅𝑁𝑁𝑖𝑖 𝑏𝑏𝑁𝑁𝑖𝑖𝑖𝑖 
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 𝑏𝑏𝑁𝑁𝑖𝑖𝑖𝑖+𝑅𝑅𝑁𝑁𝑖𝑖 𝑏𝑏𝑁𝑁𝑖𝑖𝑖𝑖     (1) 

 
NDBI = 𝑆𝑆ℎ𝑜𝑜𝑁𝑁𝑜𝑜 𝑤𝑤𝑁𝑁𝑤𝑤𝑁𝑁 𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 𝑏𝑏𝑁𝑁𝑖𝑖𝑖𝑖−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 𝑏𝑏𝑁𝑁𝑖𝑖𝑖𝑖

𝑆𝑆ℎ𝑜𝑜𝑁𝑁𝑜𝑜 𝑤𝑤𝑁𝑁𝑤𝑤𝑁𝑁 𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 𝑏𝑏𝑁𝑁𝑖𝑖𝑖𝑖−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 𝑏𝑏𝑁𝑁𝑖𝑖𝑖𝑖  (2) 
 
 
𝐿𝐿𝜆𝜆 = (𝐿𝐿𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆− 𝐿𝐿𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆

𝑄𝑄𝐶𝐶𝑎𝑎𝑎𝑎𝜆𝜆𝑎𝑎𝜆𝜆
) 𝑄𝑄𝐶𝐶𝑁𝑁𝐶𝐶 +  𝐿𝐿𝜆𝜆𝜆𝜆𝜆𝜆𝑁𝑁    (3) 

 
 
𝐿𝐿𝜆𝜆1 = 𝑀𝑀𝐿𝐿 · 𝑄𝑄𝑐𝑐𝑁𝑁𝐶𝐶 + 𝐴𝐴𝐿𝐿     (4) 
 
 

𝑇𝑇𝑠𝑠𝑁𝑁𝑜𝑜 = ( 𝐾𝐾2

𝐶𝐶𝑖𝑖(𝐾𝐾1
𝐿𝐿𝜆𝜆

+1)
) −  273.15 °C    (5)  

 
 
𝜀𝜀 = 𝑚𝑚 · 𝑃𝑃𝑤𝑤 + 𝑛𝑛     (6) 
 
 
𝑃𝑃𝑤𝑤 = [ (NDVI−NDVImin )

(NDVImax−NDVImin )
] ²    (7) 

 
 

LST =  [ 𝑇𝑇𝑠𝑠𝑎𝑎𝑠𝑠
1+(𝜆𝜆× 𝑇𝑇𝑠𝑠𝑎𝑎𝑠𝑠

𝜌𝜌 )×𝐶𝐶𝑖𝑖( 𝜀𝜀)
]   (8) 

 

 (6)

where: ε is the LSE, m and  n are constant values, 
and Pv is the vegetation proportion, it was 
computed using least amount and the upper 
amount value of NDVI applying the Eq. (7). 

 

NDVI = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 𝑏𝑏𝑁𝑁𝑖𝑖𝑖𝑖−𝑅𝑅𝑁𝑁𝑖𝑖 𝑏𝑏𝑁𝑁𝑖𝑖𝑖𝑖 
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 𝑏𝑏𝑁𝑁𝑖𝑖𝑖𝑖+𝑅𝑅𝑁𝑁𝑖𝑖 𝑏𝑏𝑁𝑁𝑖𝑖𝑖𝑖     (1) 

 
NDBI = 𝑆𝑆ℎ𝑜𝑜𝑁𝑁𝑜𝑜 𝑤𝑤𝑁𝑁𝑤𝑤𝑁𝑁 𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 𝑏𝑏𝑁𝑁𝑖𝑖𝑖𝑖−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 𝑏𝑏𝑁𝑁𝑖𝑖𝑖𝑖

𝑆𝑆ℎ𝑜𝑜𝑁𝑁𝑜𝑜 𝑤𝑤𝑁𝑁𝑤𝑤𝑁𝑁 𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 𝑏𝑏𝑁𝑁𝑖𝑖𝑖𝑖−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 𝑏𝑏𝑁𝑁𝑖𝑖𝑖𝑖  (2) 
 
 
𝐿𝐿𝜆𝜆 = (𝐿𝐿𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆− 𝐿𝐿𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆

𝑄𝑄𝐶𝐶𝑎𝑎𝑎𝑎𝜆𝜆𝑎𝑎𝜆𝜆
) 𝑄𝑄𝐶𝐶𝑁𝑁𝐶𝐶 +  𝐿𝐿𝜆𝜆𝜆𝜆𝜆𝜆𝑁𝑁    (3) 

 
 
𝐿𝐿𝜆𝜆1 = 𝑀𝑀𝐿𝐿 · 𝑄𝑄𝑐𝑐𝑁𝑁𝐶𝐶 + 𝐴𝐴𝐿𝐿     (4) 
 
 

𝑇𝑇𝑠𝑠𝑁𝑁𝑜𝑜 = ( 𝐾𝐾2

𝐶𝐶𝑖𝑖(𝐾𝐾1
𝐿𝐿𝜆𝜆

+1)
) −  273.15 °C    (5)  

 
 
𝜀𝜀 = 𝑚𝑚 · 𝑃𝑃𝑤𝑤 + 𝑛𝑛     (6) 
 
 
𝑃𝑃𝑤𝑤 = [ (NDVI−NDVImin )

(NDVImax−NDVImin )
] ²    (7) 

 
 

LST =  [ 𝑇𝑇𝑠𝑠𝑎𝑎𝑠𝑠
1+(𝜆𝜆× 𝑇𝑇𝑠𝑠𝑎𝑎𝑠𝑠
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Finally, LST was retrieved from the effective 
at-satellite temperature using the Eq. (8) [Du et 
al. 2014]:
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 (8)

where: Tsat indicates the effective at-satellite tem-
perature, λ express the value of the wave-
length emitted by the thermal bands, ρ is 
h×c/σ [Du et al. 2014], and ε is the LSE 
already calculated.

Terrestrial carbon change

Originated by the Natural Capital Project 
group, the InVEST carbon model is a GIS open 
tool. It provides information about the amounts of 
carbon stock in various terrestrial pools [Sharp et 
al. 2016]. The model requires two primary inputs, 
namely, LULC maps come out from the classifica-
tion task and quantities of terrestrial carbon stocks 
in each carbon pool collected from literature re-
views [Nel et al. 2022; Sharp et al. 2016] (Table 3). 
A diachronic analysis was done using the outputs 

Table 1. LULC classes description
LULC Class Descriptions

Bare land Areas with no dominant vegetation cover or constructions, with the presence of earthen material.

Built-up land Areas characterized by development intensity with domination of constructed materials

Vegetation Areas dominated by canopy (≥4.5cm), shrub layer (1.5 cm to 2 cm) or grass.

Water Areas with water surface, such as, swimming pools, rivers, lake oceans.

Table 2. Calibration constants
Parameter Band 6 Band 10

K1 (W/m2 srμm) 607.76 774.89

K2 (K) 1260.56 1321.08
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of this model in order to assess the dynamics of 
the terrestrial carbon for all the study years.

Regression analysis

The extract point tool of ArcGIS was applied to 
generate testing value samples of LST, NDVI, NDBI 
and terrestrial carbon storage for each study year. 
Then, statistical analysis was carried out using scat-
ter plots regression analysis of Microsoft Office Ex-
cel software for all five time-points, i.e., 1984, 1994, 
2004, 2014 and 2019 to conduct an analysis of the 
interrelationships between LST, indices (NDBI and 
NDVI), and terrestrial carbon storage.

RESULTS

Classification and examination of LULC maps

Five LULC maps were generated from Land-
sat dataset, all with the maximum overall accu-
racy that could be obtained after performing the 
classification iteratively. The spatial expansion of 
each LULC class and its statistical changes over 
35 years are displayed in Figure 3.

The built-up class exhibited a substantial 
growth with a net increase of 22.16 km², whereas 
bare land and vegetation cover witnessed a de-
crease in their areas with a net decrease of -25.17 

Table 3. Quantities of terrestrial carbon pools of different LULC classes (Tg/C)
LULC Name Carbon-aboveground Carbon-belowground Carbon-soil

Vegetation 31.20 1.10 18.67

Bare land 3.50 0.35 16.70

Built-up 3.00 0.60 13.50

Water 0.00 0.00 0.00

Figure 3. Spatial distribution and percentage of LULC classes for each study year
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km² and -3.20 km², respectively. The water class 
showed a minor decrease of -0.18 km². 

Evaluation of the final outputs of the classifi-
cation process was determined through the confu-
sion matrix and the Kappa coefficient. Both meth-
ods aim to visualize the performance of the clas-
sification by comparing its actual and predicted 
values of the target variables [Wan et al. 2024]. 

The total accuracy of the Landsat-derived LULC 
maps is given in Table 4.

Spatiotemporal pattern of the normalized 
indices

Figure 4 depicts the spatial distribution and 
the percentage of each NDVI class. The values 

Table 4. Evaluation of the LULC maps

LULC classes

Landsat 5 Landsat 8

1984 1994 2004 2014 2019
Producer

(%)
User
(%)

Producer
(%)

User
(%)

Producer
(%)

User
(%)

Producer
(%)

User
(%)

Producer
(%)

User
(%)

Bare Land 98.80 96.96 99.94 67.35 99.0 97.18 100.00 98.21 99.15 99.59

Built-up 99.57 91.41 98.26 98.76 98.87 98.50 99.35 99.61 99.34 99.12

Vegetation 50.57 100.00 19.87 99.52 87.36 97.44 88.70 99.51 98.13 98.87

Water 100.00 100.00 100.00 99.35 99.93 99.93 100.00 99.72 99.72 99.92

Overall accuracy 98.60% 80.35% 99.02% 99.45% 99.70%

Kappa coefficient 0.96 0.72 0.97 0.97 0.98

Figure 4. Spatial distribution and percentage of NDVI classes for each study year
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were distributed between -0.21 and 0.36 in 1984, 
-0.05 and 0.37 in 1994, -0.39 and 0.52 in 2004, 
-0.26 and 0.78 in 2014, as well as -0.12 and 0.68 
in 2019. Peak NDVI measurements are noted in 
both the western and southwest portions of the 
study area with a total surface of 16.03 km² in 
1984, this total area decreased to 9.52 km² in 
2019. The northeast, the central and the southeast 
sides of Agadir showed the minimum values of 
NDVI with a total area of 18.75 km² and 35.50 
km² in 1984 and 2019, respectively. On the oth-
er hand, Figure 5 illustrates the spatial extent of 

NDBI and the area of each NDBI class in per-
centage. The NDBI included values from −0.31 
to 0.20 in 1984, from −0.27 to 0.16 in 1994, from 
−0.47 to 0.23 in 2004, from −0.37 to 0.60 in 2014, 
and from −0.28 to 0.45 in 2019. Both the central 
and eastern areas of the city displayed elevated 
NDBI. These values witnessed an increase by 
10.63 km² over the study analysis (from 59.82 in 
1984 to 70.45 km² in 2019). In turn, low NDBI 
was identified in the northern part of the city. 
A decrease of 09.60 km² was highlighted, from 
27.77 km² in 1984 to 18.18 km² in 2019.

Figure 5. Spatial pattern and percentage of NDBI classes for the study years
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LST retrieval

Figure 6 showcases the spatial distribution 
of LST captured across different time intervals 
throughout the research. The uppermost records 
of LST were recorded in 2004 and 2014 with a 
temperature of 40°C, while the temperatures less 
than 25°C were identified during 1994 and 2004 
in large extent compared to other years. The re-
sults showed an average increase of temperature 
by 3.50°C for the period 1984–2014 and then a 
decrease by 2.60°C between 2014 and 2019. 

Estimation of terrestrial carbon 
stocks and segregation

According to the output report generated by the 
model, the amount of carbon storage across Aga-
dir LULC showed an overall stability (Figure 7). 
The highest rate of land-based carbon storage is 
reported in the aboveground biomass pool with an 
amount of 0.10 Tg C in 1984 and 3.33 Tg C in 2019 
followed by the belowground biomass (0.001 to 0.8 
Tg C) and soil organic. The mean carbon storage of 
the vegetation landscape in 1984 was estimated at 

Figure 6. Spatial pattern of LST
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1.88 Tg C, this amount will change to 4.34 Tg C, 
4.08 Tg C, 4.59 Tg C, and 4.25 Tg C during 1994, 
2004, 2014, and 2019, respectively. In contrast, 
the carbon storage of urban areas is reduced from 
0.45 Tg C in 1984 to 0.13 Tg C in 2019, due to the 
significant conversion in LULC types and particu-
larly the loss of vegetation cover. The values about 
the aboveground biomass during 2019 can be ex-
plained by the implantation of a significant quantity 
of the Florida palm trees over the city. The three 
pools illustrated positive values of stocking and 
sequestering terrestrial carbon during all the study 
years, except for the period 2004–2014 that record-
ed a negative value of sequestration (Figure 8).

DISCUSSION 

LULC change detection

Post-classification analysis was carried out on 
each LULC map for the purpose of calculation 

the rates of changes of every class of LULC. 
Three intervals were chosen, namely, 1984–1994, 
1994–2004, and 2004–2019. As per the results, in 
1984, 59.67% of the total city area was covered 
by bare land. These surfaces decreased to 31.48% 
in 2019 in favor of the built-up class that wit-
nessed a significant growth from 31.93% in 1998 
to 57.38% in 2019. The green cover showed a low 
decrease between 1984 and 2019 (from 12.72% 
to 9.18%), while water class remained its total 
area between 0.81 and 3.22%.

Agadir LULC changes are due to two signifi-
cant phenomena, the considerable demographic 
growth and its rapid economic development. The 
city witnessed an important urban growth of the 
city after the homologation of the new urban 
management plan of the city and the establish-
ment of many urban subdivision plans in order 
to create new neighborhoods (Salam, Tikiouine, 
Al Houda, Hay Mohammadi) To address the re-
quirements of the expanding population [Agence 
Urbaine Agadir 2011]. 

Figure 7. Terrestrial carbon (Tg C) in three land use classes

Figure 8. Total carbon stored and sequestered (Tg C)
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The ERAC/Sud-Agadir establishment, now 
referred to as Groupe Al Omrane-Agadir is one 
of the leaders in housing and urban development 
that led the urban transformation of Agadir [Ben 
Attou 2003]. Between 1984 and 1994, ERAC-
Sud-Agadir created 12366 completed units in-
cluding 3753 houses, 400 commercial shops and 
7895 residential lots, and 318 industrial lots. In 
addition, it realized 90488 residential units be-
tween 2004 and 2009. Furthermore, 900 ha of the 
total city area underwent transformation, result-
ing in the establishment of 19484 residential plots 
between 2007 and 2010; as part of the national 
program “cities without substandard housing” ap-
proved by the Moroccan government [Presenta-
tion of the Region | Souss Massa Region n.d.]. 
After the earthquake of 1960, significant efforts 
have been made to bring the shine re-develop 
the touristic sector along the coastline its natural 
landscapes. By the end of 1985, 46 hotels with 
about 2000 to 3000 bed capacity were built in 
the touristic zone, providing a considerable direct 
and indirect employment equal to 8000 work-
ers. In addition, a completely new sector called 
Founty was built over 300 ha in the southern-
most of the touristic zone towards the mouth of 
the Oued Souss. These numbers have continued 
to increase from 21586 beds in 2001 to 27904 in 
2007. In 2019, the capacity of the touristic zone 
reached more than 40000 beds with an estimation 
of 550000 employment [HCP. 2020].

Other economic sectors led to the consumption 
of bare lands in the northernmost part of the city 
are the industrial activities and fishing industry. The 
industrial zone of 60 ha and Anza, that lies along 
the coast to the north of the city; are the two main 
locations of the industrial activities. Hence, many 
new residential areas were created next to the two 
industrial zones and the port in order to respond to 
the large flows of immigrants/workers to Agadir 
since the 1970s [Ben Attou and Semmoud 2015].

LULC change and its impact on LST change

The LST values within each LULC class were 
computed utilizing a statistic tool implemented in 
ArcGIS software. It was perceived that bare ar-
eas exhibited the highest temperatures, followed 
by urbanized regions. Specifically, the recorded 
maximum temperatures were 40.96°C in 2014 
and 37.91°C in 2019, respectively. The presence 
of construction materials used in urban develop-
ment can be seen because of the increase of social 

and economic needs of a population in exponen-
tial growth, therefore having positive regression 
coefficients of the LST-NDBI model (Figure 9). 
These results revealed that noticeable up surg-
ing of LST is recorded in the areas with high ur-
ban footprints, consistently with [Pannunzio et 
al. 2024] who linked the increasing LST to the 
areas that witnessed rapid urban growth or bare 
soil. With the analysis of [Min et al. 2019] who 
highlighted how the intensity and type of human 
activities that produced high emissions of pollut-
ants can affect the urban micro-climate and create 
artificial heat sources.

By way of explanation, the green area and 
water body showed the lowest LST values with 
a minimum temperature equal to 20.75°C and 
16.52°C, respectively, both recorded in 1984. 
Furthermore, an unfavorable association between 
LST and NDVI was identified for all the research 
time frame (Figure 10), in which the weaker LST 
were associated with higher values of NDVI. 
These values are due essentially to the presence 
of the eucalyptus forest of Aghroud nestled in the 
southwest side of the field study, covering 12 km² 
of the surface area, and the increase of urban veg-
etation especially in gardens, road network and 
private properties.

These outcomes are dependable with many 
authors such as [Iqbal and Ali 2022; Kumar et 
al. 2022] that evaluated the importance of veg-
etation partitions in regulating the thermal con-
ditions of urbanized zones. [Lin, Wei, and Guan 
2024] found that built-up area morphology causes 
changes in surface heat, so that its albedo de-
creases than green area, and causes a high LST. 
The solar radiation received by LULC types can 
alike lead to disparity in the LST recorded [Adey-
eri et al. 2024]. The evapotranspiration of plants 
and water surfaces raise the atmospheric humid-
ity and thereby abate the ambient temperature 
[Tao et al. 2024]

Effects of LULC change on terrestrial 
carbon dynamic

The outcome of carbon model analysis re-
vealed the effects of the rapid growth of the study 
area on terrestrial carbon stocks, by calculating 
the quantity of sequestered or emitted carbon for 
each LULC class over the period 1984–2019.

Overall, the areas dominated by green cov-
er or maintained with urban vegetation (coastal 
side) and zones with less road traffic with the 
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Figure 9. LST and NDBI correlation Figure 10. LST and NDVI correlation
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Table 5. Amount of carbon sequestration
Year 1984–1994 1994–2004 2004–2014 2014–2019 1984–2019

Change in carbon (Tg of carbon) 0.050 0.103 - 0.127 0.021 0.050

presence of vegetation cover (Identified notably 
in the northeast and southwest sectors of the re-
gion studied) showed high levels of capacity of 
sequestration. On the other hands, a loss of 0.127 
Tg of carbon was observed in dense urbanized ar-
eas located essentially at the central part of the 
city during the period 2004–2014.

Several studies discussed the link between 
LULC dynamic and terrestrial carbon over the 
world are confirming the finding of this analysis, 
citing for example [Nguemhe Fils et al. 2018], 
[Kusi et al. 2020] and [Piyathilake et al. 2022].

Moreover, Table 5 shows the amount of 
carbon sequestration for the same period. The 
maximum capacity of carbon sequestration was 
estimated to be 0.103 Tg C and it was recorded 

for the period 1994–2004, whilst the maximum 
carbon loss recorded in the converted area (from 
vegetation to built-up area) reaches to -0.127 Mg 
C during the period 2004–2014.

Terrestrial carbon dynamic  
and its relationship with LST

Figure 11 highlights the regression analysis 
of LST distribution in relation with the terrestrial 
carbon. Numerous studies have examined the 
correlation between high temperature and glob-
al carbon cycle, the key measure of ecosystem 
mechanism and a critical intersection between the 
terrestrial biosphere and the Earth’s climate [Xiao 
et al. 2019]. Cross-validation output showed that 

Figure 11. Correlation between LST and terrestrial carbon
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LST values are negatively correlated with terres-
trial carbon storage. Thus, the increases of anthro-
pogenic interventions (energy consumption, ur-
banization, economic activities) and the alarming 
decline in terrestrial carbon pools such as vegeta-
tion coverage will massively increase the amount 
of greenhouse gas released to the atmosphere. Es-
pecially the carbon dioxide (CO2) that affects the 
LST, harming human wellness, and reducing the 
climate sustainability of the city. This finding is 
similar to [Chaddad et al. 2022] and [Chalchissa 
and Kuris 2024] who devoted to quantifying the 
consequences of LULC alterations on ground 
temperature and carbon dynamics.

CONCLUSIONS

Due to the increase in anthropogenic activi-
ties over the last few decades, the composition 
of Earth’s biosphere has undergone significant 
changes. The aim of this study was to discern and 
evaluate the LULC changes and its impact on 
the spatiotemporal dynamics of terrestrial carbon 
stocks and thermal characteristics of Agadir city, 
utilizing multi-temporal Landsat datasets span-
ning from 1984 to 2019. 

The results illustrate a notable conversion of 
vegetated and bare lands into urbanized areas. 
This urban expansion demonstrates a significant 
linear correlation with LST records, indicating 
that the weather conditions of this city are becom-
ing more extreme over time. Additionally, this 
study highlights the impact of urbanization on the 
physical characteristics of the land surface, con-
tributing to a decline in terrestrial carbon stocks.

The obtained findings indicate that improving 
vegetation areas has the potential to reduce LST 
while also offering an opportunity to sequester 
carbon, emphasizing the imperative of increas-
ing green spaces and implementing appropriate 
measures to promote afforestation, particularly in 
barren land areas. 

Hence, the findings offer valuable insights for 
guiding future research efforts on the impact of 
various policies on LULC changes in semi-arid 
regions. By utilizing high-resolution data and 
advanced algorithms, future studies could delve 
deeper into monitoring the effects of the growing 
trend in settlement areas on local environmental 
health and vulnerability. This would enable in-
formed decision-making and facilitate proactive 
measures to address emerging challenges.
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