PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Improvement in the diagnosis of melanoma and dysplastic lesions by introducing ABCD-PDT features and a hybrid classifier

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Melanoma and dysplastic lesions are pigmented skin lesions whose accurate classification is of great importance. In this paper, we have proposed a computer-aided diagnosis (CAD) system to improve the diagnostic ability of the conventional ABCD (asymmetry, border irregularity, color, and diameter) analysis. We introduced features extracted by local analysis of range of intensity variations within the lesion that describe pigment distribution and texture (PDT) features. The statistical distribution of pigmentation at a specified direction and distance was analyzed through grey level co-occurrence matrix (GLCM). Some other quantitative features were also extracted by computing neighborhood grey-tone difference matrix. These were correlated with human perception of texture. A hybrid classifier was designed for classification of melanoma, dysplastic, and benign lesions. Log-linearized Gaussian mixture neural network (LLGMNN), K-nearest neighborhood (KNN), linear discriminant analysis (LDA), and support vector machine (SVM) construct the hybrid classifier. The proposed system was evaluated on a set of 792 dermoscopy images and the diagnostic accuracies of 96.8%, 97.3%, and 98.8% for melanoma, dysplastic, and benign lesions were achieved, respectively. The results indicate that PDT features are promising features which in combination with the conventional ABCD features are capable of enhancing the classification performance of the pigmented skin lesions.
Twórcy
autor
  • Faculty of Engineering, Department of Biomedical Engineering, Aliabad Katoul Branch, Islamic Azad University, Aliabad Katoul 49417-93451, Iran
autor
  • Department of Electrical Engineering, Aliabad Katoul Branch, Islamic Azad University, Aliabad Katoul, Iran
Bibliografia
  • [1] Melanoma Skin Cancer. American Cancer Society website. Available at http://www.cancer.org/acs/groups/cid/documents/webcontent/003120-pdf.pdf [accessed 26.05.17].
  • [2] Farber MJ, Heilman ER, Friedman RJ. Dysplastic nevi. Dermatol Clin 2012;30(3):389–404.
  • [3] Tucker MA, Halpern A, Holly EA, Hartge P, Elder DE, Sagebiel RW, et al. Clinically recognized dysplastic nevi: a central risk factor for cutaneous melanoma. JAMA 1997;277(18):1439–44.
  • [4] Website Skin Cancer Foundation. Available at http://www.skincancer.org/skin-cancer-information/dysplastic-nevi [accessed 26.05.17].
  • [5] Soyer HP, Argenziano G, Zalaudek I, Corona R, Sera F, Talamini R, et al. Three-point checklist of dermoscopy. Dermatology 2004;208(1):27–31.
  • [6] Emre Celebi M, Kingravi HA, Iyatomi H, Alp Aslandogan Y, Stoecker WV, Moss RH, et al. Border detection in dermoscopy images using statistical region merging. Skin Res Technol 2008;14(3):347–53.
  • [7] Baldi A, Quartulli M, Murace R, Dragonetti E, Manganaro M, Guerra O, et al. Automated dermoscopy image analysis of pigmented skin lesions. Cancers 2010;2(2):262–73.
  • [8] Maglogiannis I, Doukas CN. Overview of advanced computer vision systems for skin lesions characterization. IEEE Trans Inf Technol Biomed 2009;13(5):721–33.
  • [9] Ferris LK, Harkes JA, Gilbert B, Winger DG, Golubets K, Akilov O, et al. Computer-aided classification of melanocytic lesions using dermoscopic images. J Am Acad Dermatol 2015;73(5):769–76.
  • [10] Smaoui N, Bessassi S. A developed system for melanoma diagnosis. Int J Comput Vis Signal Process 2013;3(1): 10–7.
  • [11] Sheha MA, Mabrouk MS, Sharawy A. Automatic detection of melanoma skin cancer using texture analysis. Int J Comput Appl 2012;42(20):22–6.
  • [12] Tenenhaus A, Nkengne A, Horn JF, Serruys C, Giron A, Fertil B. Detection of melanoma from dermoscopic images of naevi acquired under uncontrolled conditions. Skin Res and Technol 2010;16(1):85–97.
  • [13] Celebi ME, Kingravi HA, Uddin B, Iyatomi H, Aslandogan YA, Stoecker WV, et al. A methodological approach to the classification of dermoscopy images. Comput Med Imaging Graph 2007;31(6):362–73.
  • [14] Abuzaghleh O, Barkana BD, Faezipour M. Noninvasive realtime automated skin lesion analysis system for melanoma early detection and prevention. IEEE J Transl Eng Health Med 2015;3:1–12.
  • [15] Satheesha T, Satyanarayana D, Prasad G. Early detection of melanoma using color and shape geometry feature. J Biomed Eng Med Imaging 2015;2(4):33.
  • [16] Faal M, Baygi M, Hossein M, Kabir E. Improving the diagnostic accuracy of dysplastic and melanoma lesions using the decision template combination method. Skin Res Technol 2013;19(1):e113–22.
  • [17] Nachbar F, Stolz W, Merkle T, Cognetta AB, Vogt T, Landthaler M, et al. The ABCD rule of dermatoscopy: high prospective value in the diagnosis of doubtful melanocytic skin lesions. J Am Acad Dermatol 1994;30(4):551–9.
  • [18] Argenziano G, Fabbrocini G, Carli P, De Giorgi V, Sammarco E, Delfino M. Epiluminescence microscopy for the diagnosis of doubtful melanocytic skin lesions: comparison of the ABCD rule of dermatoscopy and a new 7-point checklist based on pattern analysis. Arch Dermatol 1998;134(12):1563–70.
  • [19] Menzies SW, Ingvar C, Crotty KA, McCarthy WH. Frequency and morphologic characteristics of invasive melanomas lacking specific surface microscopic features. Arch Dermatol 1996;132(10):1178–82.
  • [20] Henning JS, Dusza SW, Wang SQ, Marghoob AA, Rabinovitz HS, Polsky D, et al. The CASH (color, architecture, symmetry, and homogeneity) algorithm for dermoscopy. J Am Acad Dermatol 2007;56(1):45–52.
  • [21] Abbas Q, Fondón I, Rashid M. Unsupervised skin lesions border detection via two-dimensional image analysis. Comput Methods Programs Biomed 2011;104(3):e1–5.
  • [22] Messadi M, Bessaid A, Taleb-Ahmed A. Extraction of specific parameters for skin tumour classification. J Med Eng Technol 2009;33(4):288–95.
  • [23] Oliveira RB, Mercedes Filho E, Ma Z, Papa JP, Pereira AS, Tavares JMR. Computational methods for the image segmentation of pigmented skin lesions: a review. Comput Methods Programs Biomed 2016;131:127–41.
  • [24] Møllersen K, Zortea M, Schopf TR, Kirchesch H, Godtliebsen F. Comparison of computer systems and ranking criteria for automatic melanoma detection in dermoscopic images. PLOS ONE 2017;12(December (12)):e0190112.
  • [25] Celebi ME, Iyatomi H, Schaefer G, Stoecker WV. Lesion border detection in dermoscopy images. Comput Med Imaging Graph 2009;33(2):148–53.
  • [26] Lee T, Ng V, Gallagher R, Coldman A, McLean D. Dullrazor®: a software approach to hair removal from images. Comput Biol Med 1997;27(6):533–43.
  • [27] Leon SJ. Linear algebra with applications. New York: Macmillan; 1980.
  • [28] Otsu N. A threshold selection method from gray-level histograms. Automatica 1975;11(285–296):23–7.
  • [29] Norton KA, Iyatomi H, Celebi ME, Ishizaki S, Sawada M, Suzaki R, et al. Three-phase general border detection method for dermoscopy images using non-uniform illumination correction. Skin Res Technol 2012;18(3):290–300.
  • [30] Abbas Q, Garcia IF, Emre Celebi M, Ahmad W, Mushtaq Q. A perceptually oriented method for contrast enhancement and segmentation of dermoscopy images. Skin Res Technol 2013;19(1):e490–7.
  • [31] Alcón JF, Ciuhu C, Ten Kate W, Heinrich A, Uzunbajakava N, Krekels G, et al. Automatic imaging system with decision support for inspection of pigmented skin lesions andmelanoma diagnosis. IEEE J Sel Top Signal Process 2009; 3(1):14–25.
  • [32] Farina B, Bartoli C, Bono A, Colombo A, Lualdi M, Tragni G, et al. Multispectral imaging approach in the diagnosis of cutaneous melanoma: potentiality and limits. Phys Med Biol 2000;45(5):1243.
  • [33] Christensen JH, Soerensen MB, Linghui Z, Chen S, Jensen MO. Pre-diagnostic digital imaging prediction model to discriminate between malignant melanoma and benign pigmented skin lesion. Skin Res Technol 2010;16(1):98–108.
  • [34] Haralick RM, Shanmugam K, Dinstein IH. Textural features for image classification. IEEE Trans Syst Man Cybern 1973; SMC-3:610–21.
  • [35] Amadasun M, King R. Textural features corresponding to textural properties. IEEE Trans Syst Man Cybern 1989;19:1264–74.
  • [36] Peng H, Long F, Ding C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 2005;27(8):1226–38.
  • [37] Webb AR. Statistical pattern recognition; 2002.
  • [38] Jain AK, Duin RPW, Mao J. Statistical pattern recognition: a review. IEEE Trans Pattern Anal Mach Intell 2000;22:4–37.
  • [39] Jain A, Zongker D. Feature selection: evaluation, application, and small sample performance. IEEE Trans Pattern Anal Mach Intell 1997;19(2):153–8.
  • [40] Shannon CE. A mathematical theory of communications. Bell Syst Tech J 1948;27. 379–423 and 623–56.
  • [41] Moddemeijer R. On estimation of entropy and mutual information of continuous distributions. Signal Process 1989;16(3):233–48.
  • [42] Tsuji T, Fukuda O, Ichinobe H, Kaneko M. A log-linearized Gaussian mixture network and its application to EEG pattern classification. IEEE Trans Syst Man Cybern Part C (Appl Rev) 1999;29(1):60–72.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2a56fddd-52aa-4da9-a48d-5864d6359119
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.