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Abstract

In mining, where production is affected by several factors, including equipment availability, it is necessary to develop
reliable models to accurately predict mine production to improve operational efficiency. Hence, in this study, four (4)
machine learning algorithms e namely: artificial neural network (ANN), random forest (RF), gradient boosting
regression (GBR) and decision tree (DT)) e were implemented to predict mine production. Multiple Linear Regression
(MLR) analysis was used as a baseline study for comparison purposes. In that regard, one hundred and twenty-six (126)
datasets from an open-pit gold mine were used. The developed models were evaluated and compared using the cor-
relation coefficient (R2), mean absolute percentage error (MAPE) and variance accounted for (VAF). It has been shown in
this study that the ANN model can best estimate open-pit mine production by comparing its performance to that of the
other machine learning models. The R2, MAPE, RMSE and VAF of the models were 0.8003, 0.7486, 0.7519, 0.6538, 0.6044,
4.23%, 5.07%, 5.44%, 6.31%, 6.15% and 79.66%, 74.69%, 74.10%, 65.16% and 60.11% for ANN, RF, GBR, DT and MLR,
respectively. Overall, this study has shown that machine learning algorithms predict mine production with higher ac-
curacy.

Keywords: mine production, artificial neural network, open-pit mining, mining excavator, machine learning

1. Introduction

M ining activities typically involve the contin-
uous excavation and transport of vast

amounts of materials using high-performance
equipment. Loading and transporting of materials
are around 50% of the overall mine operating costs
of open pit mines [1]. As such, the nature of a
loading and truck transport system must be done
efficiently to reduce energy consumption and
maximise mine production or reach production
targets [2,3]. Depending on the nature and prepa-
ration of the production process (drilling, blasting,
loading, and transport), the efficiency and produc-
tion output of a mine can vary considerably from
another mine [4,5]. Thus, significant variations

between production targets set during the planning
stage and the actual production are common in
mining. These variations can be attributed to ore
quality variability within an orebody, mining
equipment availability and reliability, design-
related issues with mining processes and other
factors [6]. It is worth noting that the performance of
the mining equipment is dependent primarily on
utilisation, availability, and its rated capacity [7e9].
When there is uncertainty surrounding technical

and equipment issues, actual production might
differ from targets. Thus, it is vital to conduct thor-
ough investigations into the main reasons why these
variations do occur [10]. In mining, production ef-
ficiency is affected by a number of technical aspects,
which include blast or ground conditions and
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equipment performance. Due to the uncertainty of
equipment availability, the actual production may
vary from the anticipated output.
In that regard, a variety of statistical and deter-

ministic simulation models have been developed
and employed to assess mining equipment selec-
tion, maintenance and configuration of the transport
fleet so as to estimate production [11e13]. Theoret-
ically, researchers have suggested mathematical
relations for estimating the production of excavating
and loading equipment. These mathematical re-
lations are typically dependent on availability and
utilisation of the equipment [14,15]. Furthermore,
several other existing empirical and statistical
methods are based on algorithms that take into ac-
count the sequential nature of duties carried out by
trucks and excavators. It is worth mentioning that
these conventional empirical estimation methods
produce undesirable outputs when compared to the
actual values obtained from the field.
It is noteworthy that several other research studies

have employed machine learning and deep learning
algorithms in the mining industry to model and
predict critical issues such as blast vibrations
[16e18], geology [19,20] and mineral processing
[21e23]. Furthermore, mine shovel failure has been
accurately forecasted using support vector machines
in Dindarloo and Siami-Irdemoosa [24]. In the esti-
mation of mine production, Baek and Choi [25]
conducted a study to predict ore production and
crusher utilisation of a truck haulage system in a
limestone underground mine using a deep neural
network approach. Five hidden layers and 300 hid-
den layer nodes in the model structure gave the best
prediction results. In Baek and Choi [26], two ANN
models were built for morning and afternoon
haulage sessions, respectively. According to the
study, the MAPE for morning and afternoon were
4.78% and 5.26%, respectively, with a determination
coefficient of 0.99 each. Furthermore, in Choi et al.
[27], machine learning models including ANN,
support vector machine (SVM), random forest (RF),
classification and regression tree (CART) and k-
nearest neighbours were used to estimate ore pro-
duction in an open-pit limestone mine in South
Korea. Among the models, the SVM algorithm
performed better with the highest accuracy. Addi-
tionally, in Edwards and Griffiths [28], hydraulic
excavator cycle time, output and excavation cost
were predicted using ANN and multiple linear
regression (MLR) models. They found out that the
ANN model provided a significant improvement
over the MLR model with a sum square error of
0.194 and a MAPE of 7%, indicating a 14% reduction
on the equivalent MLR model. Other studies

concerning construction and infrastructural projects
indicate that ANN has the potential to estimate
equipment productivity better than MLR [29,30].
Based on the literature, it has been found that

limited machine learning models have been applied
for the prediction of surface mine production.
Hence, it is difficult to establish the best strategy for
forecasting mine output using machine learning
algorithms. Thus, this study is aimed at imple-
menting four different machine learning techniques
in predicting surface mine production to ascertain
their prediction accuracy and generalisation power.
The methods implemented are the random forest
(RF), artificial neural network (ANN), gradient boost
regression (GBR) and decision trees (DT). A multi-
ple linear regression (MLR) was implemented to
serve as a baseline for comparison purposes in this
study. It is worth mentioning that no research work
has been done to holistically compare the predictive
performance of RF, ANN, GBR, DT and MLR as an
attempt to explore the best case to predict mine
production based on the average daily number of
trucks, average percentage excavator utilisation and
average daily excavator worked hours.
The various models were evaluated and compared

using the coefficient of determination (R2), mean
absolute percentage error (MAPE), variance
accounted for (VAF), and root mean squared error
(RMSE). This article will potentially serve as a
guideline for more research into the use of machine
learning for the modelling and forecasting of mining
production.
The remaining part of the paper is organised as

follows: the mine and data description are outlined
in Section 2. Section 3 presents the methodology.
Here, a concise description of the RF, GBR, ANN,
DT and MLR models is provided. In Section 4, the
model development processes, as well as perfor-
mance indicators, are presented. The obtained re-
sults and their discussions, along with the
challenges and future perspectives of the research,
are detailed in Section 5 and Section 6. Section 7
finally presents the conclusion of the paper.

2. Mine and data description

2.1. Description of the mine

Data from Mine X in the Ashanti Region of Ghana
were collected for this study. Mine X is situated
approximately 180 km to the northwest of the capi-
tal, Accra. There are four pits in the area of study:
Pits W, X, Y and Z. The field of mining in the
research area is shown in Figure 1. The mine em-
ploys drill and blast as the means of fragmenting the
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rock mass. For blasthole drilling, a 4.2-m-long rod
with a diameter of 127mm is used. Vertically drilled
blast holes in a staggered design have a burden and
spacing of 4� 4.5 and a stemming height of 3m.
Ammonium nitrate fuel oil (ANFO) is the main
explosive in the mine. At the bottom of each hole, a
detonator and a booster are placed to ensure a
successful explosion. 400 g of pentolite booster is
usually used for competent rock formations and
250 g for soft to medium-hard formations, as well as
for charging trim holes to ensure the walls’ stability.
Usually, down lines with a 500ms delay are used.
Generally, down lines with a 500ms delay are used.
Surface connectors are normally used with different
lengths and delays, like 0ms, 17ms, 25ms and
67ms. The charged holes are blasted by a non-
electronic initiation device. Secondary breaking of
the boulders is done by a rock breaker before they
are fed into the crushers. The fragmented rocks are
carried onto dump trucks by excavators and are
transported to the processing plant for gold extrac-
tion. In order to achieve an average grade and
tonnes of material to process at the plant, the engi-
neers produce a blending plan per day.

2.2. Datasets description

One hundred and twenty-six (126) historical
datasets were taken from Pit W of Mine X over a
126-day timeframe for this analysis. The following

parameters are presented in the data sets: average
trucks, average daily excavator hours, average daily
excavator worked hours, average daily excavator
breakdown hours, average percentage excavator
utilisation and daily production. Since the mine
runs 2 shifts a day, the average values of both
shifts are seen in each row of input. The statistical
overview of the whole dataset is seen in Table 1.
Table 2 also shows the correlation within the entire
dataset.

3. Methodology

3.1. Artificial neural network model

The ANN is a well-known artificial intelligence
computational method commonly used in all fields
of engineering, including mining engineering. The
architecture is focused on the configuration of the
human brain with its network of layers and neurons.
In other words, ANN addresses challenges through
information acquisition [25,31]. The ANN training
method performs constant weight and bias adjust-
ments in order to attain output based on an error
minimisation function. Many training algorithms
are available for the training of an ANN model. The
feed-forward and back-propagation algorithms are
two of the most often used ANN training algorithms
[32]. The execution process of the ANN algorithm
during training is illustrated in Figure 2.

Fig. 1. Study area.
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3.2. Random forest regressor model

Breiman [34] presentedRF as an ensemblemachine
learning algorithm. It is in the category of decision
tree algorithms, which can solve problems in
regression and classification. The RF regressor has
been designed basically to solve regression prob-
lems. It requires the growing of many decision trees
through the bagging of bootstraps [35]. It is based on
the cumulative outcomes of several decision trees in
reaching a final decision. The RF regressor collects
the source matrix consisting of values of the various
characteristics evaluated for the particular training
field, with the RF regressor generating a set of K-
regression trees, then performs an average of the
output [34,36,37]. The RF regressor is, however,
known to take significantly longer to train than de-
cision trees because it generates a large number of
trees. It is quite complicated [38].

3.3. Gradient boosting regressor model

The GBR has emerged recently as a prime ma-
chine learning model. GBR is very efficient on data
that has been structured, i.e., where the information
has been grouped into columns and rows and on
datasets that are medium-sized, with the existence
of at most a few million-sized populations. GBR is
basically an ensemble approach that operates by
training several individual decision trees. Unlike RF,
where the trees are parallelly trained, in a GBR, the
trees are sequentially trained, with each tree

learning from the mistakes of the preceding tree.
The hundreds of weak learners are aggregated to
construct a single robust ensemble student or
learner with the contributions of each student
learned during training via Gradient Descent
(therefore, the weights of each tree will be a model
parameter). GBR, however, will continue to improve
to reduce all errors to a minimum. This can lead to
overfitting by overemphasising outliers [39].

3.4. Decision tree regressor model

DT is a non-parametric supervised learning
approach used for regression and classification. DT
approximates a sine curve with a set of if-then-else
decision rules by learning from data. As the tree gets
deeper, the more complicated the laws for decision-
making are and the more suitable the model be-
comes [40]. A DT establishes a tree structure for
regression models. A concise description of the un-
derpinning theory of the regression tree, which best
suits this research, is presented in this section.
Multiple regressions and recursive segregation are
performed on the dataset to trigger the DT. The data
division mechanism is replicated from the root node
within every inner node of the tree rule until a pre-
viously defined stop condition is achieved [41]. When
the induction of the tree is complete, tuning can be
implemented in order to boost the tree’s ability to
generalise by reducing the complexity of its struc-
ture. The models then create a series of rules that can
be used to forecast via the repeated splitting process.

Table 2. Correlation matrix of the data.

Breakdown hours Worked hours Utilisation (%) Number of trucks Production

Breakdown hours 1
Worked hours �0.303 1
Utilisation (%) �0.263 0.462 1
Number of trucks 0.082 0.281 0.302 1
Production �0.014 0.538 0.467 0.621 1

Table 1. Statistical description of the entire datasets.

( p-value) Breakdown
hours (hr)
0.102316

Worked
hours (hr)
0.000002

Utilisation (%)
0.006462

Number of
trucks
0.000000

Production
(bcm/d)

count 126 126 126 126 126
mean 5.03 10.78 64.64 9.36 11805.44
std 3.45 1.53 10.83 1.49 1634.64
min 0.00 7.59 35.35 6.00 8022.00
10% 0.56 8.94 51.64 7.00 9436.00
25% 1.24 9.64 56.98 8.00 10829.00
50% 5.38 10.62 63.19 10.00 11620.00
75% 8.11 11.79 72.17 10.00 13160.00
90% 9.00 12.80 78.38 11.00 14028.00
max 11.18 14.87 91.16 12.00 15078.00
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3.5. Multiple linear regression model

Regression analysis is a common predictive
modelling technique. The model can be written with
more than one explanatory variable, as shown in
Equation (1).

y¼a0 þ a1X1 þ a2X2 þ a3X3 þ :::þ anXn ð1Þ

where n is the number of input parameters, y is the
output variable, ai regression parameters (i¼ 0, 1, 2,
3, …, n) and Xi is the input variable (i¼ 1, 2, 3, …, n).
In the MLR model, the least-squares approach is

usually used for approximation. If the regression
coefficients are obtained, a projection equation is
used to estimate the value of a continuous output
(target) as a linear function of one or more disparate
inputs. The relevance of regression models depends
on the way models are interpretable and easy to use.
The main logical drawback, however, of all regres-
sion methods is that the relationship can only be
established, but the underlying causal process can
never be guaranteed.
These models were implemented herein to predict

and evaluate mine production in an open-pit gold
mine in Ghana with excavator and truck operating
conditions. Three input factors in the input layer
were used to predict mine production, the average
daily number of trucks, the average daily excavator
worked hours and the average percentage of exca-
vator utilisation.

4. Model development

4.1. Data selection and data preprocessing

The simplest approach based on the holdout
cross-validation approach was followed to partition
the datasets. During the splitting, 88 datasets, rep-
resenting 70% of the entire 126 datasets, were
selected for training, while the remainder,

accounting for 30% of the datasets, were exploited
for testing the trained model. In order to evaluate
the models’ efficiency, the test datasets were used as
unseen data while the training datasets were used
exclusively for model development. Essentially, the
realistic engineering performance of the various
models is determined by the efficiency of the test
dataset.
A preliminary regression analysis was performed,

utilising the four acquired input parameters
(average daily excavator breakdown hours, average
daily number of trucks, average percentage exca-
vator utilisation, and average daily excavator
worked hours) with their corresponding p-values in
order to choose the optimal input parameters, the
construction of the various models. Table 1 shows
that the p-value for average daily excavator break-
down hours (0.102316) is greater than the alpha
value (0.05); hence it was not deemed qualified to be
used as an input parameter for the model develop-
ment. During the data preparation, pre-processing
and cross-correlation of the parameters were per-
formed. The correlation coefficient was used to
analyse the correlation between the output and
input variables of the entire dataset, as outlined in
Table 2.
Thus, the training and testing subsets were chosen

to be statistically similar subsets at the 95% signifi-
cance level in order to be representative of the entire
dataset. The statistical properties of both the
training and testing data subsets, with correspond-
ing percentiles (0.1, 0.25, 0.5, 0.75, 0.9) used for the
different models, are shown in Table 3. The ob-
tained data subsets (training and testing) used to
develop all the models are shown in Table 3.

4.2. Data normalisation

The input parameters used in this research were
normalised into the range [e1, 1] with Equation (2)

Fig. 2. Execution process of the ANN algorithm during training. Reproduced from [33].
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[42] before the creation of the ANN model in order
to ensure consistency of values, regardless of vary-
ing units in the different input parameters.

Pi¼Pmin þ ðQi �QminÞ � ðQmax � PminÞ
ðQmax �QminÞ ð2Þ

where Pi is the normalised data, Qi represents the
observed data, Qmin and Qmax represents the mini-
mum values and maximum of the observed data
with Pmax and Pmin values set at 1 and e1,
respectively.

4.3. Model formulation

It is necessary to determine the proper set of pa-
rameters that enable the generation of reliable
models for prediction by avoiding the implementa-
tion of the default configurations suggested by
software packages to research the overall perfor-
mance of the various machine learning algorithms.
In addition, experiments that test new algorithms
and compare them with other approaches may be
skewed by the enhanced understanding of the al-
gorithms studied if model parameters are not opti-
mised [43]. It is worth mentioning that the various
machine learning algorithms applied in this study,
including the MLR model, were implemented using
the scikit-learn library in Jupyter Notebook with
Python (version 2.7.9).

4.3.1. ANN
Python environment was used to perform these

analyses and train the data: generating plots with
Matplotlib [44], Pandas [45] handled the datasets,
Scikit-learn [46] was also implemented for data
analysis, and the ANN was implemented using
Keras [47] on top of TensorFlow [48]. The structure
(input, hidden, and output layers) of the ANN
model was configured, and the activation function
for each layer was defined. The optimizer and
number of epochs (training rounds) were also

determined to begin the actual model training on
the training dataset. This research aimed to deter-
mine the optimal structure for an ANN model used
for prediction by creating and testing several
different models, ranging from two to five hidden
layers. Each hidden layer’s neuron size was evalu-
ated from 100 to 500 in 100-neuron intervals. All
activation functions were changed to ReLU [49] in
the input layer and hidden layers and weight up-
dates were performed with the Adam Optimizer
[50]. The trained ANN model is used to predict the
test data, and the prediction error is calculated. To
prevent model over-fitting, the early stopping
technique [51] was used to monitor MAPE for both
training and testing events after every iteration.
Training is stopped when the error on the test be-
gins to worsen (overfitting).

4.3.2. RF regressor
In the formulation of the RF regressor model,

various range values of the critical parameters
(minimum samples split, number of estimators,
maximum depth and maximum leaf nodes) were
investigated via a grid-search technique using the
training dataset [52] to ascertain the optimum RF
regressor model. Thus, a minimum sample split of
1e5, number of estimators of 1e500 with a step size
of 10, maximum depth of 1e8 with a step size of 1,
and maximum leaf nodes of 1e20 with a step size of
2, were applied. It is demonstrated that by
increasing the number of trees, the generalisation
error always converges, thereby preventing the
overtraining problem [34,53,54].

4.3.3. GB regressor
In the development of the GBR model, the huber

[55] and least square [56] loss functions, as well as a
number of estimators from 10 to 200 at ten intervals,
were used to determine the best parameters for the
GBR algorithm using the grid-search technique on
the training datasets. The maximum depth of the

Table 3. Statistical description of training and testing data subsets used.

Input Output

Worked hrs Utilisation (%) No. of trucks Production (bcm/d)

Training Testing Training Testing Training Testing Training Testing

count 88 38 88 38 88 38 88 38
mean 10.74 10.87 64.77 64.37 9.44 9.16 11839.91 11725.63
std 1.46 1.69 11.13 10.25 1.44 1.62 1690.14 1516.90
10% 9.11 8.77 52.48 51.17 8.00 7.00 9452.80 9875.60
25% 9.72 9.47 57.08 56.61 8.00 8.00 10801.00 10885.00
50% 10.62 10.77 62.05 63.76 10.00 10.00 11676.00 11410.00
75% 11.77 12.34 72.66 71.75 10.00 10.00 13287.00 12944.25
90% 12.55 12.96 79.09 77.39 11.00 11.00 14133.30 13519.10
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tree, which greatly affects the model’s performance,
was assessed from 1 to 10 at one interval.

4.3.4. DT regressor
A number of DT training parameters, such as

measurement of dissimilarity, tree depth and the
minimum sample number to be present at each leaf
node, must be defined [57]. The measure of
dissimilarity affects the manner in which data is
split throughout each node. The minimum sample
number and tree depth for each leaf node are pa-
rameters influencing the complexity of the structure
of the tree: the more levels and the fewer minimum
nodal observations, the higher the complexity of the
model structure. Therefore, to ensure the highest
prediction accuracy, it is important to calibrate these
parameters, preventing the generation of compli-
cated structures that overfit the dataset and end up
losing their generality [58]. The mean absolute
percentage error was used to calculate the quality of
a split in this study. The DT regressor was evaluated
using tree depths from 1 to 10, with a minimum
number of samples per node between 1 and 5, at an
interval of 1 to obtain generalizable and stable
models. Further, the best splitter was used to
develop the DT model.

4.4. Model performance assessment

Mean Absolute Percentage Error (MAPE) [Eq. (3)],
coefficient of determination (R2) [Eq. (4)], variance
accounted for (VAF) [Eq. (5)], and root mean
squared error (RMSE) [Eq. (6)] were used to assess
the performance of the training and testing datasets
of the developed models [57]. Then, for practical

applications, the best model was chosen and sug-
gested. The following were used to calculate the
four indices:

MAPE¼

2
664
Pm
t¼1

����At�Pt
A

����
m

3
775� 100% ð3Þ

R2¼1�
Pm
t¼1

ðAt � PtÞ2

Pm
t¼1

ðAt �AÞ2
ð4Þ

VAF¼
�
1� varðAt � PtÞ

varðAtÞ
�
� 100 ð5Þ

where m, At, Pi, A and P the total number of samples,
the actual values, the predictedfield values, themean
of the actual values and the mean of the predicted
values, respectively. A model with an R2 and VAF
value closer to 1 and a MAPE closer to 0% is consid-
ered a superior model than the other model.

5. Results and discussion

5.1. Model developed

According to the numbers of hidden layers and
hidden layer neurons in the ANN model, the MAPE
and coefficient of determination (R2) for the test
dataset are illustrated in Figures 3 and 4, respec-
tively. The MAPE gradually decreased, while the
coefficient of determination (R2) increased as the
number of neurons in the hidden layers increased.

Fig. 3. ANN model configurations based on MAPE.
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Increasing the number of hidden layers also resul-
ted in an improvement in both the R2 and MAPE.
The R2 for the testing dataset was the highest
(0.8003) and the lowest MAPE (4.23%) when the
number of hidden layers was 5 and the number of
neurons in the hidden layers was 300 (Figs. 3 and 4).
Ultimately, the ANN model with 5 hidden layers
and 300 neurons for each hidden layer was deter-
mined to be the best structure for the ANN model.
Thus, for this study, 5 hidden layers with 300 neu-
rons in each hidden layer was used as the model
structure, as shown in Figure 5.
For the RF regressor, the obtained results showed

that the RF model with a number of trees¼ 300, a
minimum sample split of 2, and a maximum depth

of 4 gave the lowest MAPE and highest R2 value
using the grid search technique. Moreover, GBR
with a number of estimators¼ 30 with the least
square loss function and a maximum depth of 3, was
determined as the best model from the grid search
approach. Further, the best splitter gave the best DT
model along with a maximum depth of 3 and a
minimum sample leaf of 1. The developed MLR
model is shown in Equation (6).

P ¼ 1271.4692 þ 424.2250WHþ1917.7604U
þ 504.9406NT (6)

where P is the production, WH is the worked hours,
U is the utilisation, and NT is the number of trucks.
The optimal training results, based on the R2 and

Fig. 4. ANN model configurations based on coefficient of determination (R2).

Fig. 5. Optimal ANN model structure.
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MAPE criteria, are presented in Table 4. Table 5
indicates the optimal testing results based on the R2,
MAPE and VAF criteria.

5.2. Model performance assessment

Based on the test data, the performance of the
developed predictive models was assessed bymeans
of R2, MAPE and VAF. The obtained results are
shown in Table 5. As shown in Table 5, the ANN
model performed very well in predicting mine pro-
duction, as it produced the highest R2 value of 0.8003
and the lowest MAPE value of 4.23% on the testing
datasets. This indicates that the ANN generalises
better on the unseen test dataset than the other
models, as it was able to predict 95.77% of the actual
unseen production data accurately. The non-linear
relationship between the parameters was better
taken into account by ANN compared to the other
non-linear models investigated. The ANN properly
predicted 80% (R2) of the variance in mine produc-
tion, whereas just 20% was incorrect. Moreover, the
ANN gave the highest VAF value of 79.66%.
From Table 5, the RF regressor predicted mine

production with R2, MAPE and VAF of 0.7486, 5.07%
and 74.69%, respectively, which was the second-best
performing machine learning algorithm. It can also
be gleaned from Table 5 that the GBR model was the
third-best performing algorithm in predicting mine
production, as it had an R2 value of 0.7519, MAPE of
5.44% and a VAF of 74.10%. Furthermore, the DT
regressor model had a higher R2 and VAF value

compared to the MLR model, which in turn had a
lower MAPE than the DT regressor model.
This finding suggests that ANN is the most

effective model for estimating mine production.
Among the machine learning models, the poorest
performance on the testing datasets were given by
the DT regressor approach. This could be due to its
inadequacy in predicting continuous values [37].
This is because the DT regressor continues to
generate new nodes in order to fit the continuous
data values, and the tree eventually gets too com-
plex to interpret. It thus loses its ability to generalise
as a result. Hence producing inaccurate predictions
based on unseen data. For an open-pit mine, the DT
models are unreliable for making output predictions
due to their larger margins of error. A similar
observation was reported by [26]. Nevertheless, it
can generally be observed that the machine learning
models are better at predicting mine production
than the MLR model. The MLR model, as a baseline
model for this study, assumes linearity and does not
clearly understand the hidden causal effects or
patterns of the input parameters on mine produc-
tion, hence its poor performance. The MLR model
accounts for 60% (R2) of the variance in mine output
while disregarding the remaining 40% (Table 5).
The predicted production values by the various

models are compared to the actual production
values and plotted as presented in Figures 6e10.
With reference to Figures 6e10, it can be observed
that all the approaches presented in this study had
predicted production values that were closer to the
actual production. However, a careful look at Fig-
ures 6e10 reveals that, generally, the machine
learning models, with the exception of the DT re-
gressor, had their predictions match up with the
actual with smaller amounts of variation than the
MLR model. This further reveals the capability and
superiority of machine learning in predicting sur-
face mine production in this study.
The ANN was able to learn the hidden patterns

within the datasets during training and generalise
well on unseen data (test data). It can be seen that
the strength of the relationship between predicted
and actual daily production for the ANN model is
stronger than that for the MLR model. Compara-
tively, the prediction error was decreased by almost
2% using the ANN model. DT is vulnerable to data
that is noisy [40]. A small amount of noise might
make it unstable, resulting in less accurate pre-
dictions. Furthermore, it usually results in data
overfitting, which leads to incorrect predictions.
This is because it continues to generate new nodes

Table 4. Comparison of results obtained from the different models on the
training dataset.

Model Training

R2 MAPE (%) VAF (%)

ANN 0.81 4.69 80.37
RF 0.81 5.42 80.12
GBR 0.86 5.42 83.65
DT 0.68 6.40 68.01
MLR 0.53 8.26 52.88

Table 5. Comparison of results obtained from the different models on the
testing dataset.

Model Testing

R2 MAPE (%) VAF (%)

ANN 0.8003 4.23 79.66
RF 0.7486 5.07 74.69
GBR 0.7519 5.44 74.10
DT 0.6538 6.31 65.16
MLR 0.6044 6.15 60.11
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in order to fit the data (even noisy data), and the tree
eventually gets too complex to interpret. It thus
loses its ability to generalise as a result of this
phenomenon [41].

6. Challenges and future directions

Prediction has gained popularity in recent years
and is now being used in a wide variety of fields.
Despite machine learning’s popularity in mining
and geo-engineering, the literature demonstrates
that it has received little attention when it comes to
assessing and forecasting mine production. This

research has presented a technique utilizing ma-
chine learning models to assess the efficiency of
excavator and dump truck utilisation in order to
predict mine production in an open-pit operation.
This study indicates that the parameters modelled
to predict mine production can be carefully moni-
tored to effectively reduce excavator idle times and
unnecessary down times during operations [59,60].
In fact, these machine learning approaches will help
to confidently consider the working patterns of ex-
cavators and dump trucks in connection with the
mining output that is forecasted. In addition, due to
their better predictions, ANN algorithms can be

Fig. 7. Relationship between testing predicted and actual results using DT Regressor.

Fig. 6. Relationship between testing predicted and actual results using ANN.
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used to maximise the most sensitive factors affecting
the output in order to reach production goals.
Particularly, efficient excavator utilisation (reducing
idle times) would not only minimise production loss
but also reduce unnecessary fuel consumption [61].
As revealed in Table 2, increasing the number of
trucks during operations can positively improve
excavator utilization, which, in turn, increases the
mine production.
Yet, as mines are dynamic systems where the

working environment regularly changes, it is

important to update the ANN model frequently
with the newest training data and tune the model
parameters to take these features into account.
However, in order to design and anticipate mine
production, more study is needed into the usage of
alternative machine learning models other than the
ones employed in this article. Moreover, deter-
mining an efficient equipment utilisation pattern by
incorporating these machine learning algorithms in
assessing and predicting mine production can also
offer mining companies the opportunity to operate

Fig. 8. Relationship between testing predicted and actual results using RF Regressor.

Fig. 9. Relationship between testing predicted and actual results using GBR.
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their fleets more efficiently in order to achieve
maximum productivity. Also, desktop application
software can be built for the developed model to
produce hands-on predictions for a mining com-
pany. It is proposed that larger data sets be explored
in future studies with these machine learning tech-
niques to hopefully improve their accuracy in pre-
dicting daily mine production.

7. Conclusion

This research evaluated the performance of ma-
chine learning algorithms; ANN, RF, GBR and DT
regressor, as well as MLR, to predict daily surface
mine production. In that regard, 126 datasets were
collected and used in this study. Input parameters of
average daily number of trucks, average percentage
excavator utilisation, and average daily excavator
worked hours were used for the development of the
various models, whereas daily production served as
the output parameter. Among the models imple-
mented, ANN was found to be more efficient in
predicting mine production with a coefficient of
determination (R2) of 0.8003, MAPE of 4.23% and
VAF of 79.66% on the testing data followed by the
RF with R2, MAPE and VAF of 0.7486, 5.07% and
74.69%, respectively. The results indicate that the
developed ANN model is more reliable. Among the
machine learning models, the DT regressor model
was the least performing algorithm in predicting
mine production with higher errors (R2, MAPE and
VAF of 0.6538, 6.31% and 65.16%, respectively).
From the results, it is possible to predict mine pro-
duction more accurately when using the machine

learning models rather than the multiple regression
analysis, which gave R2, MAPE and VAF of 0.6044,
6.15% and 60.11%, respectively. Moreover, it was
determined that the ANN model can best estimate
open-pit mine production by comparing its perfor-
mance to that of other machine learning models.
Overall, this study has shown that machine learning
techniques can be relevant in modelling and pre-
dicting mine production in an open pit mine site.
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