PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synthesis of double network nanohydrogel and its performance in release of doxorubicin

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Synteza nanohydrożelu o podwójnej sieci i jego działanie w uwalnianiu doksorubicyny
Języki publikacji
EN
Abstrakty
EN
The synthesis, properties, and performance of a controlled drug (doxorubicin, DOX) release system based on a double-network nanohydrogel (DNN) obtained from poly(acrylic acid) grafted onto sodium alginate (S-ALG) are described. The drug release behavior of DNNs was studied under different pH and temperature conditions. The DNNs were characterized by ultraviolet-visible (UV) spectroscopy, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS), and thermogravimetric analysis (TGA). DNN was confirmed to be suitable for use in controlled drug delivery systems.
PL
Opisano syntezę, właściwości i wydajność systemu kontrolowanego uwalniania leku (doksorubicyny, DOX) opartego na nanohydrożelu o podwójnej sieci (DNN), otrzymanego z poli(kwasu akrylowego) szczepionego na alginianie sodu (S-ALG). Zachowanie DNN podczas uwalniania leku badano w różnych warunkach pH i temperatury. DNN scharakteryzowano za pomocą spektroskopii w nadfiolecie widzialnym (UV), skaningowej mikroskopii elektronowej (SEM), spektroskopii w podczerwieni z transformacją Fouriera (FT-IR), dynamicznego rozpraszania światła (DLS) i analizy termograwimetrycznej (TGA). Potwierdzono, że DNN nadaje się do stosowania w systemach kontrolowanego dostarczania leków.
Czasopismo
Rocznik
Strony
300--311
Opis fizyczny
Bibliogr. 69 poz., rys., tab., wykr.
Twórcy
  • Department of Chemistry, Payame Noor University, PO BOX 19395-3697, Tehran, Iran
  • Department of Polymer and Materials Chemistry, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, 19839-63113, Tehran, Iran
  • Department of Chemistry, Payame Noor University, PO BOX 19395-3697, Tehran, Iran
  • Department of Chemistry, Payame Noor University, PO BOX 19395-3697, Tehran, Iran
Bibliografia
  • [1] Sethi S., Thakur S., Singh A. et al.: “Biopolymeric Nanohydrogels as Devices for Controlled and Targeted Delivero of Drugs” in “Green and Sustainable Nanotechnology: Fundamentals, Developments and Applications”, Springer, Cham 2023. p. 1857. https://doi.org/10.1007/978-3-031-16101-8_69
  • [2] Gao Y., Vogus D., Zhao Z. et al.: Bioengineering and Translational Medicine 2021, 7(1), 10245. https://doi.org/10.1002/btm2.10245
  • [3] Rajput R., Narkhede J., Naik J.: ADMET and DMPK 2020, 8(1), 1. https://doi.org/10.5599/admet.724
  • [4] Li C., Obireddy S.R., Lai W.F.: Drug Deliv 2021, 28(1), 1594. https://doi.org/10.1080/10717544.2021.1955042
  • [5] Altuntaş E., Özkan B., Güngör S. et al.: Pharmaceutics 2023, 15(6), 1644. https://doi.org/10.3390/pharmaceutics15061644
  • [6] Martău G.A., Mihai M., Vodnar D.C.: Polymers 2019, 11(11), 1837. https://doi.org/10.3390/polym11111837
  • [7] Szabó L., Gerber-Lemaire S., Wandrey C.: Polymers (Basel) 2020, 12(4), 919. https://doi.org/10.3390/polym12040919
  • [8] Butowska K., Woziwodzka A., Borowik A. et al.:. Materials (Basel) 2021, 14(9), 2135. https://doi.org/10.3390/ma14092135
  • [9] Thorn C. F., Oshiro C., Marsh S. et al.: Pharmacogenetics Genomics 2011, 21(7), 440. https://doi.org/10.1097/FPC.0b013e32833ffb56
  • [10] Vyas M., Simbo A. D., Mursalin M. et al.: Current Cancer Therapy Reviews 2020, 16(4), 320. https://doi.org/10.2174/1573394716666191216114950
  • [11] Lakkakula J.R., Gujarathi P., Pansare P. et al.: Carbohydrate Polymers 2021, 259, 117696. https://doi.org/10.1016/j.carbpol.2021.117696
  • [12] Kamenova K., Radeva L., Yoncheva K. et al.: Polymers 2022, 14(17), 3694. https://doi.org/10.3390/polym14173694
  • [13] Qiu Y., Park K.: Advanced Drug Delivery Reviews 2001, 53(3), 321. https://doi.org/10.1016/S0169-409X(01)00203-4
  • [14] Sharpe L.A., Daily A.M., Horava S.D. et al.: Expert Opin Drug Delivery 2014, 11(6), 901-15. https://doi.org/10.1517/17425247.2014.902047
  • [15] Li L., Wu P., Yu F. et al.: Journal of Materials Chemistry A 2022, 17(10), 9215. https://doi.org/10.1039/D2TA00540A
  • [16] Zhuang, Y., Kong Y., Han K. et al.: New Journal of Chemistry 2017, 41(24), 15127. https://doi.org/10.1039/C7NJ03392C
  • [17] Ning X., Hung J., Yuan N. et al.: International Journal of Molecular Sciences 2022, 23(24), 15757. https://doi.org/10.3390/ijms232415757
  • [18] Huang X., Li J., Luo J. et al.: Materials Today Communications 2021, 29, 102757. https://doi.org/10.1016/j.mtcomm.2021.102757
  • [19] Fan Z., Ji D., Kim J.: Advanced Intelligent System 2023, 5(10), 2300194. https://doi.org/10.1002/aisy.202300194
  • [20] Chen K., Liu M., Wang F. et al.: Frontiers in Bioengineering and Biotechnology 2022, 10, 198. https://doi.org/10.3389/fbioe.2022.846401
  • [21] Pourjalili N., Bagheri Marandi G.B., Kurdtabar M. et al.: Polymers for Advanced Technologies 2023, 34(4), 1315. https://doi.org/10.1002/pat.5972
  • [22] Pourjalili N., Marandi G.B., Kurdtabar M. et al.: Journal of Macromolecular Science, Part A 2022, 59(8), 537. https://doi.org/10.1080/10601325.2022.2092411
  • [23] Surikutchi B.T., Obenza-Otero R., Russo E. et al.: International Journal of Pharmaceutics 2022, 622, 121828. https://doi.org/10.1016/j.ijpharm.2022.121828
  • [24] Zhang H., Shi L.W.E., Zhou J.: Journal of Polymer Science 2023, 61(1), 7. https://doi.org/10.1002/pol.20220510
  • [25] Zeng L., He J., Cao Y. et al.: Smart Materials in Medicine 2021, 2, 229. https://doi.org/10.1016/j.smaim.2021.07.005
  • [26] Asua J.M.: Progress in Polymer Science 2002, 27(7), 1283. https://doi.org/10.1016/S0079-6700(02)00010-2
  • [27] Faucheu J., Gauthier C., Chazeau L. et al.: Polymer 2010, 51(1), 6. https://doi.org/10.1016/j.polymer.2009.11.044
  • [28] Thakur S., Sharma B., Verma A. et al.: Journal of Cleaner Production 2018, 198, 143. https://doi.org/10.1016/j.jclepro.2018.06.259
  • [29] Sevinç-Özakar R., Seyret E., Özakar E. et al.: Gels 2022, 8(9), 578. https://doi.org/10.3390/gels8090578
  • [30] Rezanejade Bardajee G., Ghadimkhani R., Jafarpour F.: International Journal of Biological Macromolecules 2024, 260(2), 128871. https://doi.org/10.1016/j.ijbiomac.2023.128871
  • [31] Guo, B., Liang Y., Dong R.: Nature Protocols 2023, 18(11), 3322. https://doi.org/10.1038/s41596-023-00878-9
  • [32] Rezanejade Bardajee G., Mizani F., Hosseini S.S.: Journal of Polymer Research 2017, 24(3), 48. https://doi.org/10.1007/s10965-017-1197-4
  • [33] Suhail M., Liu J.-Y., Khan A. et al.: Journal of Materials Research and Technology 2022, 19, 3073. https://doi.org/10.1016/j.jmrt.2022.06.056
  • [34] Andreazza R., Morales A., Pieniz S. et al.: Polymers 2023 15(4), 1026. https://doi.org/10.3390/polym15041026
  • [35] Ahmed E.M.: Journal of Advanced Research 2015, 6(2), 105. https://doi.org/10.1016/j.jare.2013.07.006
  • [36] Li J., Zhang L., Gu J. et al.: RSC Advances 2015, 5(26), 19859. https://doi.org/10.1039/C4RA15482G
  • [37] Nasution H., Harahap H., Dalimunthe N.F. et al.: Gels 2022, 8(9), 568. https://doi.org/10.3390/gels8090568
  • [38] Sadeghi M., Heidari B.: Materials (Basel) 2011, 4(3), 543. https://doi.org/10.3390/ma4030543
  • [39] Chen J., Zhao Y.: Journal of Applied Polymer Science 2000, 75(6), 808. https://doi.org/10.1002/(SICI)1097-4628(20000207)75:6<808::AID-APP10>3.0.CO;2-3
  • [40] Wang W.B., Wang A.Q.: Advanced Materials Research 2010, 96, 177. https://doi.org/10.4028/www.scientific.net/AMR.96.177
  • [41] Lee C.S., Hwang H.S.: Gels 2023, 9(12), 951. https://doi.org/10.3390/gels9120951
  • [42] Schott H.: Journal of Pharmaceutical Sciences 1992, 81(5), 467. https://doi.org/10.1002/jps.2600810516
  • [43] Ghobadifar V., Bagheri Marandi G., Kurdtabar M. et al.: Iranian Journal of Chemistry and Chemical Engineering 2023, 42(3), 875.
  • [44] Dragan E.S.: Chemical Engineering Journal 2014, 243, 572. https://doi.org/10.1016/j.cej.2014.01.065
  • [45] Dragan E. S.: Pure and Applied Chemisty 2014, 86(11), 1707. https://doi.org/10.1515/pac-2014-0713
  • [46] Myung, D., Waters D., Wiseman M. et al.: Polymers for Advanced Technologies 2008, 19(6), 647. https://doi.org/10.1002/pat.1134
  • [47] Sadeghi M., Hosseinzadeh H.: Journal of Applied Polymer Science 2008, 108(2), 1142. https://doi.org/10.1002/app.26464
  • [48] Pourjavadi A., Ghasemzadeh H., Hosseinzadeh H.: e-Polymers 2004, 4, 027. https://doi.org/10.1515/epoly.2004.4.1.275
  • [49] Rezanejade Bardajee G., Sharifi M., Torkamani H. et al.: Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021, 616, 126350. https://doi.org/10.1016/j.colsurfa.2021.126350
  • [50] Cao Z., Li W., Liu R. et al.: Biomedicine and Pharmacotherapy 2019, 118, 109340. https://doi.org/10.1016/j.biopha.2019.109340
  • [51] Pethő Z., Najder K., Carvalho T. et al.: Cancers (Basel) 2020, 12(9), 2484. https://doi.org/10.3390/cancers12092484
  • [52] Mao J., Kondu S., Ji H.-F. et al.: Biotechnology and Bioengineering 2006, 95(3), 333. https://doi.org/10.1002/bit.20755
  • [53] Dadsetan M., Taylor K.E., Yong C. et al.: Acta Biomaterialia 2013, 9(3), 5438. https://doi.org/10.1016/j.actbio.2012.09.019
  • [54] Farjadian F., Rezaeifard S., Naeimi M. et al.: International Journal of Nanomedicine 2019, 14, 6901. https://doi.org/10.2147/IJN.S214467
  • [55] Elbayomi S.M., Wang H., Tamer T.M. et al.: Polymers 2021, 13(15), 2575. https://doi.org/10.3390/polym13152575
  • [56] Aminoleslami D., Porrang S., Vahedi P. et al.: Oxidative Medicine and Cellular Longevity 2022, 1, 1548410. https://doi.org/10.1155/2022/1548410
  • [57] Ya-zhen W., Xue-ying W., Yu-tao D. et al.: Journal of Nanomaterials 2020, 1, 5492953.
  • [58] Lungu I.I., Nistorescu S., Badea M. A. et al.: Polymers 2020, 12(12), 2799. https://doi.org/10.3390/polym12122799
  • [59] Belattmania Z., Kaidi S., El Atouani S. et al.: Molecules 2020, 25(18), 4335. https://doi.org/10.3390/molecules25184335
  • [60] Rezanejade Bardajee G., Asgari S., Mirshokraie S. A.: Iranian Journal of Chemistry and Chemical Engineering 2021, 40(5), 1386.
  • [61] Di J., Gao X., Du Y. et al.: Asian Journal of Pharmaceutical Sciences 2021, 16(4), 444. https://doi.org/10.1016/j.ajps.2020.07.005
  • [62] Niroumand U., Firouzabadi N., Goshtasbi G. et al.: Frontiers in Materials, 2023, 10, 1189463. https://doi.org/10.3389/fmats.2023.1189463
  • [63] Oyewumi M. O., Kumar A., Cui Z.: Expert Review of Vaccines 2010, 9(9), 1095. https://doi.org/10.1586/erv.10.89
  • [64] Varenne F., Botton J., Merlet C. et al.: Colloids and Surfaces A: Physicochemical and Engineering Aspects 2015, 486, 218. https://doi.org/10.1016/j.colsurfa.2015.08.044
  • [65] Alshawwa S.Z., Kassem A.A., Farid R.M. et al.: Pharmaceutics 2022, 14(4), 883. https://doi.org/10.3390/pharmaceutics14040883
  • [66] Kołodyńska D., Skiba A., Górecka B. et al.: “Hydrogels from Fundaments to Application” in “Emerging Concepts in Analysis and Applications of Hydrogels”, IntechOpen, Rijeka 2016, p. 69. https://dx.doi.org/10.5772/63466
  • [67] Flores-Hernández C.G., Cornejo-Villegas M.L.A., Moreno-Martell A. et al.: Polymers 2021, 13(4), 504. https://doi.org/10.3390/polym13040504
  • [68] Nurazzi N.M., Asyraf M.R.M., Rayung M. et al.: Polymers 2021, 13(16), 2710. https://doi.org/10.3390/polym13162710
  • [69] Zhang Y., Wang Q., Wang Z. et al.: ChemPlusChem 2021, 86(11), 1524. https://doi.org/10.1002/cplu.202100474
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2a4b7f19-f619-4c89-b566-22264d7744b7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.