PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Problems related to the correct determination of switching power losses in high-speed SiC MOSFET power modules

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
High-speed switching capabilities of SiC MOSFET power modules allow building high power converters working with elevated switching frequencies offering high efficiencies and high power densities. As the switching processes get increasingly rapid, the parasitic capacitances and inductances appearing in SiC MOSFET power modules affect switching transients more and more significantly. Even relatively small parasitic capacitances can cause a significant capacitive current flow through the SiC MOSFET power module. As the capacitive current component in the drain current during the turn-off process is significant, a commonly used metod of determining the switching power losses based on the product of instantaneous values of drain-source voltage and drain current may lead to a severe error. Another problem is that charged parasitic capacitances discharge through the MOSFET resistive channel during the turn-on process. As this happens in the internal structure, that current is not visible on the MOSFET terminals. Fast switching processes are challenging to measure accurately due to the imperfections of measurement probes, like their output signals delay mismatch. This paper describes various problems connected with the correct determination of switching power losses in high-speed SiC MOSFET power modules and proposes solutions to these problems. A method of achieving a correct time alignment of waveforms collected by voltage and current probes has been shown and verified experimentally. In order to estimate SiC MOSFET channel current during the fast turn-off process, a method based on the estimation of nonlinear parasitic capacitances current has also been proposed and verified experimentally.
Rocznik
Strony
art. no. e140695
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
autor
  • Medcom Company, Jutrzenki 78A, 02-230 Warsaw, Poland
  • Warsaw University of Technology, Institute of Control and Industrial Electronics, Koszykowa 75, 00-662 Warsaw, Poland
Bibliografia
  • [1] Y. Li et al., “500 kW Forced-air-cooled Silicon Carbide (SiC) 3-Phase DC/AC Converter with a Power Density of 1.246 MW/m3 and Efficiency > 98.5%,” IEEE Trans. Ind. Appl., pp. 5013–5027, 2021, doi: 10.1109/tia.2021.3087546.
  • [2] X. Wen, T. Fan, P. Ning, and Q. Guo, “Technical approaches towards ultra-high power density SiC inverter in electric vehicle applications,” CES Trans. Electr. Mach. Syst., vol. 1, no. 3, pp. 231–237, Sep 2020, doi: 10.23919/tems.2017.8086101.
  • [3] R. Barlik, P. Grzejszczak, B. Leszczy´nski, and M. Szymczak, “Investigation of a High-efficiency and High-frequency 10-kW/800-V Three-phase PWM Converter with Direct Power Factor Control,” Int. J. Electron. Telecommun., vol. 65, no. 4, pp. 619–624, 2019, doi: 10.24425/ijet.2019.129821.
  • [4] S. Bąba, “Multiparameter reliability model for SiC power MOSFET subjected to repetitive thermomechanical load,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 3, p. e137386, 2021, doi: 10.24425/bpasts.2021.137386.
  • [5] H. Matsunami, “Fundamental Research on semiconductor SiC and its applications to power electronics,” Proc. Jpn. Acad. Ser. B-Phys. Biol. Sci., vol. 96, no. 7, pp. 235–254, Jul 2020, doi: 10.2183/PJAB.96.018.
  • [6] K. Yamaguchi, K. Katsura, T. Yamada, and Y. Sato, “High Power Density SiC-Based Inverter with a Power Density of 70 kW/liter or 50 kW/kg,” IEEJ J. Ind. Appl., vol. 8, no. 4, pp. 694–703, Jul 2019, doi: 10.1541/ieejjia.8.694.
  • [7] I. Sato, T. Tanaka, M. Hori, R. Yamada, A. Toba, and H. Kubota, “High power density inverter utilizing SiC MOSFET and interstitial via hole PCB for motor drive system,” Electr. Eng. Jpn., vol. 214, no. 2, Jun 2021, doi: 10.1002/eej.23323.
  • [8] Y. Yang, L. Dorn-Gomba, R. Rodriguez, C. Mak, and A. Emadi, “Automotive Power Module Packaging: Current Status and Future Trends,” IEEE Access, vol. 8, pp. 160 126–160 144, 2020, doi: 10.1109/ACCESS.2020.3019775.
  • [9] E. Barbarini and V. Le Troadec, “STMicroelectronics SiC Module in Tesla Model 3 Inverter,” pp. 1–21, 2018. [Online]. Available: http://www.oic.co.kr/files/sample_STM_SiC_Module_Tesla_Model_3_Inverter.pdf (Accessed 2021-08-25).
  • [10] S. Yu, J. Wang, X. Zhang, Y. Liu, N. Jiang, and W. Wang, “The Potential Impact of Using Traction Inverters with SiC MOSFETs for Electric Buses,” IEEE Access, vol. 9, pp. 51 561–51 572, 2021, doi: 10.1109/ACCESS.2021.3069268.
  • [11] J. Bili´nski, “The latest generation drive for electric buses powered by SiC technology for high energy efficiency,” MATEC Web of Conferences, vol. 180, p. 02012, Jul 2018, doi: 10.1051/matecconf/201818002012.
  • [12] J. Qu, Y. Yu, Q. Zhang, and S. Cui, “An All-SiC 15 kW/L 60 kW Multiplexing Converter for Electric Vehicles,” in 2020 IEEE 9th International Power Electronics and Motion Control Conference, IPEMC 2020 ECCE Asia, Nov 2020, pp. 132–136, doi: 10.1109/IPEMC-ECCEAsia48364.2020.9367996.
  • [13] P.M. Johnson and K.H. Bai, “A dual-DSP controlled SiC MOSFET based 96%-efficiency 20kW EV on-board battery charger using LLC resonance technology,” in 2017 IEEE Symposium Series on Comput. Intell., SSCI 2017 – Proceedings, vol. 2018-January, Nov 2018, pp. 1–5, doi: 10.1109/SSCI.2017.8285262.
  • [14] H. Li, S.Wang, Z. Zhang, J. Tang, X. Ren, and Q. Chen, “A SiC bidirectional LLC On-board charger,” in Conference Proceedings – IEEE Applied Power Electronics Conference and Exposition – APEC, vol. 2019-March, Mar 2019, pp. 3353–3360, doi: 10.1109/APEC.2019.8722324.
  • [15] P. Shepard, “175 kVA SiC Converters in the New Dragon 2 Locomotive,” 2018. [Online]. Available: https://eepower.com/news/175kva-sic-converters-in-the-new-dragon-2-locomotive/ (Accessed 2021-08-25).
  • [16] U. Jadli, F. Mohd-Yasin, H.A. Moghadam, P. Pande, J.R. Nicholls, and S. DImitrijev, “Measurement of Power Dissipation Due to Parasitic Capacitances of Power MOSFETs,” IEEE Access, vol. 8, pp. 187 043–187 051, 2020, doi: 10.1109/ACCESS.2020.3030269.
  • [17] J. Ra˛bkowski and T. Płatek, “A study on power losses of the 50 kVA SiC converter including reverse conduction phenomenon,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 64, no. 4, pp. 907–914, 2016, doi: 10.1515/bpasts-2016-0099.
  • [18] J. Biela, M. Schweizer, S.Waffler, and J.W. Kolar, “SiC versus Si – Evaluation of potentials for performance improvement of inverter and DC-DC converter systems by SiC power semiconductors,” IEEE Trans. Ind. Electron., vol. 58, no. 7, pp. 2872–2882, Jul 2011, doi: 10.1109/TIE.2010.2072896.
  • [19] X. Li et al., “A SiC Power MOSFET Loss Model Suitable for High-Frequency Applications,” IEEE Trans. Ind. Electron., vol. 64, no. 10, pp. 8268–8276, Oct 2017, doi: 10.1109/TIE.2017.2703910.
  • [20] X. She, A.Q. Huang, O. Lucia, and B. Ozpineci, “Review of Silicon Carbide Power Devices and Their Applications,” IEEE Trans. Ind. Electron., vol. 64, no. 10, pp. 8193–8205, Oct 2017, doi: 10.1109/TIE.2017.2652401.
  • [21] K. Li, “Wide Bandgap (SiC/GaN) Power Devices Characterization and Modeling: Application to HF Power Converters,” Ph.D. dissertation, The University of Lille, Oct 2014. [Online]. Available: http://www.theses.fr/2014LIL10080.
  • [22] N. Fritz, G. Engelmann, A. Stippich, C. Ludecke, D.A. Philipps, and R.W. Doncker, “Toward an In-Depth Understanding of the Commutation Processes in a SiC mosfet Switching Cell including Parasitic Elements,” IEEE Trans. Ind. Appl., vol. 56, no. 4, pp. 4089–4101, Jul 2020, doi: 10.1109/TIA.2020.2995331.
  • [23] X. Li, L. Zhang, S. Guo, Y. Lei, A.Q. Huang, and B. Zhang, “Understanding switching losses in SiC MOSFET: Toward lossless switching,” in WiPDA 2015 – 3rd IEEE Workshop on Wide Bandgap Power Devices and Applications, Nov 2015, pp. 257–262, doi: 10.1109/WiPDA.2015.7369295.
  • [24] Y. Xiong, S. Sun, H. Jia, P. Shea, and Z. John Shen, “New physical insights on power MOSFET switching losses,” IEEE Trans. Power Electron., vol. 24, no. 2, pp. 525–531, Feb 2009, doi: 10.1109/TPEL.2008.2006567.
  • [25] D. Bura, T. Plum, J. Baringhaus, and R.W. De Doncker, “Hysteresis Losses in the Output Capacitance of Wide Bandgap and Superjunction Transistors,” in 2018 20th European Conference on Power Electronics and Applications, EPE 2018 ECCE Europe, 2018, pp. P.1–P.9.
  • [26] Z. Zeng, J. Wang, L. Wang, Y. Yu, and K. Ou, “Inaccurate Switching Loss Measurement of SiC MOSFET Caused by Probes: Modelization, Characterization, and Validation,” IEEE Trans. Instrum. Meas., vol. 70, pp. 1–14, 2021, doi: 10.1109/TIM.2020.3024356.
  • [27] H. Sakairi, T. Yanagi, H. Otake, N. Kuroda, and H. Tanigawa, “Measurement Methodology for Accurate Modeling of SiC MOSFET Switching Behavior over Wide Voltage and Current Ranges,” IEEE Trans. Power Electron., vol. 33, no. 9, pp. 7314–7325, Sep 2018, doi: 10.1109/TPEL.2017.2764632.
  • [28] B. Agrawal, M. Freindl, B. Bilgin, and A. Emadi, “Estimating switching losses for SiC MOSFETs with non-flat miller plateau region,” in Conference Proceedings – IEEE Applied Power Electronics Conference and Exposition – APEC, Mar 2017, pp. 2664–2670, doi: 10.1109/APEC.2017.7931075.
  • [29] X. Wang, Z. Zhao, K. Li, Y. Zhu, and K. Chen, “Analytical Methodology for Loss Calculation of SiC MOSFETs,” IEEE J. Emerging Sel. Top. Power Electron., vol. 7, no. 1, pp. 71–83, Mar 2019, doi: 10.1109/JESTPE.2018.2863731.
  • [30] G. Engelmann et al., “Impact of the Different Parasitic Inductances on the Switching Behavior of SiC MOSFETs,” in Proceedings – 2018 IEEE 18th International Conference on Power Electronics and Motion Control, PEMC 2018, Aug 2018, pp. 918–925, doi: 10.1109/EPEPEMC.2018.8521911.
  • [31] N. Ren, H. Hu, K.L. Wang, Z. Zuo, R. Li, and K. Sheng, “Investigation on single pulse avalanche failure of 900V SiC MOSFETs,” in Proceedings of the International Symposium on Power Semiconductor Devices and ICs, vol. 2018-May, May 2018, pp. 431–434, doi: 10.1109/ISPSD.2018.8393695.
  • [32] Z. Gao, L. Cao, Q. Guo, and K. Sheng, “Experimental Investigation of the Single Pulse Avalanche Ruggedness of SiC Power MOSFETs,” in Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC, vol. 2020-March, Mar 2020, pp. 2601–2604, doi: 10.1109/APEC39645.2020.9124532.
  • [33] X. Li et al., “Failure Mechanism of Avalanche Condition for 1200-V Double Trench SiC MOSFET,” IEEE J. Emerging Sel. Top. Power Electron., vol. 9, no. 2, pp. 2147–2154, Apr 2021, doi: 10.1109/JESTPE.2020.2965002.
  • [34] J. Schweickhardt, K. Hermanns, and M. Herdin, “Tips & tricks on double pulse testing,” 2021. [Online]. Available: https://scdn.rohde-schwarz.com/ur/pws/dl_downloads/dl_application/application_notes/gfm347/GFM347_1e_Double_Pulse_Testing.pdf (Accessed 2021-08-25).
  • [35] Z. Zhang, B. Guo, F.F. Wang, E.A. Jones, L.M. Tolbert, and B.J. Blalock, “Methodology for Wide Band-Gap Device Dynamic Characterization,” IEEE Trans. Power Electron., vol. 32, no. 12, pp. 9307–9318, Dec 2017, doi: 10.1109/TPEL.2017.2655491.
  • [36] “CWTMini50HF Datasheet,” 2021. [Online]. Available: http://www.pemuk.com/Userfiles/cwtmini50hf/CWT_Mini50HF_DS_Feb_2020.pdf (Accessed 2021-08-25).
  • [37] E.A. Jones et al., “Characterization of an enhancement-mode 650-V GaN HFET,” in 2015 IEEE Energy Conversion Congress and Exposition, ECCE 2015, Sep 2015, pp. 400–407, doi: 10.1109/ECCE.2015.7309716.
  • [38] I. Kovačević-Badstübner, R. Stark, M. Guacci, J.W. Kolar, and U. Grossner, “Parasitic Extraction Procedures for SiC Power Modules,” in CIPS 2018 - 10th International Conference on Integrated Power Electronics Systems, 2018, pp. 343–348.
  • [39] Y. Xie, C. Chen, Y. Yan, Z. Huang, and Y. Kang, “Investigation on Ultralow Turn-off Losses Phenomenon for SiC MOSFETs With Improved Switching Model,” IEEE Trans. Power Electron., vol. 36, no. 8, pp. 9382–9397, Aug 2021, doi: 10.1109/TPEL.2021.3050544.
  • [40] C. Unger and M. Pfost, “Determination of the Transient Threshold Voltage Hysteresis in SiC MOSFETs after Positive and Negative Gate Bias,” in 2019 31st International Symposium on Power Semiconductor Devices and ICs (ISPSD), vol. 2019-May, May 2019, pp. 195–198, doi: 10.1109/ISPSD.2019.8757661.
  • [41] P. Hofstetter, R.W. Maier, and M.-M. Bakran, “Influence of the Threshold Voltage Hysteresis and the Drain Induced Barrier Lowering on the Dynamic Transfer Characteristic of SiC Power MOSFETs,” in 2019 IEEE Applied Power Electronics Conference and Exposition (APEC), vol. 2019-March, Mar 2019, pp. 944–950, doi: 10.1109/APEC.2019.8721772.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2a44b375-9ff0-41e2-bc7d-a0a41bd5357f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.