
1. Introduction

Selection plays a special role in cartographic 
generalization. It is sometimes included in the 
basic generalisation operators, e.g. as “elimina-
tion” (R. Regnauld et al. 2011). At other times, it 
is treated as a preliminary step (preprocessing) 
before the proper generalization of spatial in-
formation (K.S. Shea, R.B. McMaster 1989). 
Nevertheless, it is usually the first operation 
and as such has a significant impact on the 
overall result of the generalization process. 

The automation of cartographic generalization, 
as a complex issue, is carried out using various 
approaches, which can be divided into condition-
-action modelling, human interaction modelling 
and constraint-based modelling (L. Harrie, 

R. Weibel 2007). This work uses a condition-
-action approach. It allows to directly apply 
mathematical mechanisms for determining 
decision rules, existing in rough logics, for the 
generalization (selection) of geographical infor-
mation. Currently widely used expert systems 
based on “IF... THEN...” rules are based on 
classic rules defined by experts. This article 
proposes a method of extracting rules based 
on data, using rough logics.

Classical logic used on a daily basis based 
on the Aristotelian binary system 0-1 true-false 
(N. Adamiak 1979) is sometimes insufficient. 
This is especially the case when there is in-
consistent or internally contradictory informa-
tion, which often occurs when using real data 
(including spatial data). In response to the need 
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for formal logical operations on such data, many 
non-classical systems were created (e.g. J. Łu-
kasiewicz 1958, L.A. Zadeh in 1965), e.g. rough 
logic (Z. Pawlak 1982), of which three different 
types were used in this article. Rough logics 
provide, among others, the possibility to create 
decision rules.

Therefore, the author of the article posed the 
following research questions:

• Can rough logic be used to create object se-
lection rules for cartographic generalization?

• What is the quality of selection made using 
these rules in relation to real topographic data?

• Which of the presented methods works best 
and what are the limitations of each of them?

2. Rough logics and decision rules

2.1. Rough logics

The article uses rough logic and rough set 
theory, the foundations of which were created 
by Professor Z. Pawlak in the 1970s (Z. Pawlak 
1982, 1991, Z. Pawlak et al. 1995). Rough Set 
Theory (RST) assumes, unlike Classical Set 
Theory, that there can be three (and not two as 
in classical theory) states of an object:

• An object can, with certainty, belong to the 
set – it is then in its lower approximation defi -
ned as: 

• The object can, with certainty, not belong to 
the set – it is then outside its upper approxima-
tion defi ned as:

• The object can belong to the set or not – it 
is then outside its lower, but inside the upper 
approximation – within the boundary of the set 
described by the formula: 

In rough logic, the information system is 
most often represented in the form of a table, 
whose rows correspond to individual objects, 
and whose columns correspond to the attri-
butes describing objects. One of the attributes 
can be distinguished as a decision attribute. 

Depending on the rough logic type, attributes 
in the following measurement scales may 
appear in the attribute table: 

• RST – Rough Set Theory – attributes are 
nominal, their values can differentiate objects, 
but there is no specifi c order between them. 
A special case is the boolean attribute, which 
can have only two values (usually 0 or 1). RST 
is based on the relationship of indistinguisha-
bility between objects (Z. Pawlak 1982, Z. Paw-
lak et al. 1995);

• DRST – Dominance Based Rough Set 
Theory – attributes are expressed in an ordinal 
scale, which ensures a fi xed order of the attri-
bute values. DRST is based on the domination 
relation of one object to another, based on the 
established order of attribute values (S. Greco 
et al. 2001, R. Słowiński et.al. 2014);

• FRST – Fuzzy-Rough Set Theory – attributes 
are expressed numerically (integers or fl oating-
-point numbers). It is possible to determine not 
only the order, but also the distance between 
the individual attribute values. FRST uses 
a (non)similarity relation which, in contrast to 
the binary indistinguishability relation, takes 
values in the range <0, 1> (D. Dubois, H. Prade 
1990; C. Cornelis et al. 2008).

The decision attribute is expressed in a no-
minal (RST and FRST) or ordinal (DRST) scale. 
The decision attribute is often binary. This is 
also the case with this research: 1 – an object 
selected during selection, 0 – an object not 
selected. Attempts are also being made for the 
decision attribute which is a continuous numeric 
value. However, this requires a change (adapt-
ation) of the existing methodology, e.g. FRST 
(A. Fiedukowicz 2015a).

2.2. Decision rules

Rough logic allows to create decision rules 
such as “IF {conditions based on attributes} 
THEN {decision attribute value}” based on an 
existing data set that contains a decision attribute. 
Unlike traditional condition-action approaches, 
approximate systems can extract rules even 
from data that is contradictory, e.g. in the case 
of different values of the decision attribute for 
objects having the same values of other attri-
butes. Then, two types of rules are created: cer-
tain rules – based on data that do not contain 
internal contradictions, and rough rules – created 
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based on cases from the information system, 
which are in conflict with other examples (Z. Paw-
lak 1991). To create such rules, this research 
uses attributes directly from the topographic 
database structure (first for model data, then 
for BDOT10k) as well as the attributes added 
to this database, which represent the spatial 
context of the generalised objects. The way 
they are created and selected is described in 
more detail in the “ISPRS International Journal 
of Geo-Information” (A. Fiedukowicz 2020).

3. Methodology and source data

3.1. Research plan

The research presented in this article is part 
of a study which is the subject of the author’s 
doctoral dissertation (A. Fiedukowicz 2017). 
This research involved the following steps, of 
which those included in this article are in bold: 

1. Data enrichment with attributes descri-
bing the spatial context

2. Determining significant attributes through 
reducts (using rough logics)

3. Determining and analysing decision 
rules using rough logics

4. Applying these rules to the selection of 
topographic objects

5. Evaluation of the selection results
Points 1 and 2 have been described in the 

author’s article (A. Fiedukowicz 2020). 

3.2. Source data

The research was based on topographic 
data covering basic classes of objects, such as 
roads, buildings, and river networks. Classes 
were chosen that varied both in terms of geo-
metric representation (lines, polygons) and 
type of objects (natural, anthropogenic).

First, research was conducted on model data 
prepared for this purpose (the data is de-
scribed in detail in the works of A. Fiedukowicz 
2017, 2020). This data was created on the basis 
of an analysis of many European topographic 
databases (A. Fiedukowicz 2017) so that they 
were as universal as possible and at the same 
time accurately reflected the structures of at-
tributes in these databases. The advantages 

Fig. 1. Model data at the LoD10k (source: A. Fiedukowicz 2020)
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of conducting research using model data are 
discussed in the dissertation by A. Fiedukowicz 
(2017). Data was analysed at two scale levels: 

• 1:10,000 (LoD10k) – data generalised to 
1:50,000 (LoD50k), an area of 9.1 × 6.4 km, 
generalised object classes: buildings, roads, 
watercourses (fig. 1);

• 1:50,000 – data generalised to 1:250,000 
(LoD250k), an area of 24.6 × 22.2 km, general-
ised object classes: roads, watercourses (build-
ings were omitted in LoD50k→ LoD250k 
generalization).

The real data used for research at the 
LoD10k level came from BDOT10k (Topogra-
phic Object Database), which is the basic to-
pographic database in Poland and covers the 
entire country. The analysed object classes 
(buildings – BUBD, roads – SKDR, watercourses 
– SWRS) have attributes similar to the previously 
analysed model data. However, the larger size 
of the set, greater complexity and the possibility 
of unexpected situations or missing values in 
the data allow to check how the methodology 
developed on the model data works in relation 

to real data. The small town of Chocianów and 
its surroundings, located in Lower Silesia, was 
chosen as the test area. It gave the opportunity 
to test methods both in typical rural areas 
(consisting mainly of farmsteads), as well as in 
urban areas with more compact, diverse build-
ings and a system of streets. For this reason, 
two sub-areas were distinguished: “Town” and 
“Village”. In addition, for sections of watercourses, 
due to the relatively small number of data for 
the Chocianów area, the area from the vicinity 
of the town of Sieniawa was used (fig. 2).

The following object classes were chosen 
for generalization: 

• roads (SKDR) from LoD10k to LoD50k and 
from LoD50k to LoD250k,

• buildings (BUBD) from LoD10k to LoD50k,
• rivers (SWRS) from LoD50k to LoD250k.
BDOT10k attributes were also enriched with 

a number of attributes describing the spatial 
context resulting from the geometry of a given 
class of objects (geometric attributes) as well 
as from the neighbouring objects of other classes 
(relational attributes) (A. Fiedukowicz 2017, 2020).

Fig. 2. 1:50,000 analog maps − the reference material with marked research areas  
(source: A. Fiedukowicz 2017)
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The LoD50k level used for generalization 
was obtained by expert (manual) selection of 
objects from BDOT10k (supported by existing 
maps of this scale). Both model and real data 
have been enriched with geometric and relatio-
nal attributes representing the spatial context 
(A. Fiedukowicz 2017, 2020). All objects have 
also been expertly assigned a decision attribute 
with the value: 

• 1 – if the object was to be selected for the 
next scale level,

• 0 – if the object was not to be selected.
In the case of real data, the value of the de-

cision attribute was determined based on exist-
ing cartographic materials, such as 1:50,000 
map scans and BDOO (General Geographic 
Database – LoD250k). The task of the com-
puted rules was to correctly predict the value 
of the decision attribute based on the other 
attributes.

3.3. Detailed research plan

The adopted research methodology was dif-
ferent in relation to model data and real data 
(fig. 3). First of all, for model data (due to the 
small size of the set and the preliminary nature 
of research work at the time), the method of 
cross-validation (M.W. Browne 2000) and four 

iterations were used, and the determination of 
the training and test set was not spatial. In the 
case of real data, the training and test sets were 
determined once, by means of a spatial division 
into two sub-areas. This method of division 
better reflects real conditions in which the pro-
posed methodology could be used. That is 
because, in real applications, model training 
takes place only in a small part of the area, 
where expert decisions are made, and then 
the rules can be applied in areas for which the 
decision is not known. The division into test 
and training sets was made in such a way as 
to ensure a comparable share of both decision 
classes in them. Attempts were also made to 
maintain the training set at around ⅔ and the 
test set at around ⅓ of the entire set. The dif-
ference in determining learning and test sets 
for real and model data is illustrated in figure 4.

3.4. Rules assessment

The rules determined for model data were 
each time evaluated in terms of: 

• The numbers of rules
• The number of conditions for each rule
• Support for rules referred to as the number 

of examples of a training set that meet all the 
conditions of a rule. Relative support, i.e. the 

Fig. 3. Scheme of research on model and real data (source: A. Fiedukowicz 2017)
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ratio of the number of objects supporting the 
rule, to all objects of the training set (or to all 
objects of the training set belonging to the 
same decision class) can also be considered 
as support.

The assumption was that simpler models 
wit h a fewer number of less complex rules are 
more desirable because it is much easier to 
understand the knowledge they represent.

For real data, the assumption was the same, 
but due to the much greater complexity of the 
data, and hence the rules as well, it was not 
possible to analyse the entire decision system. 
However, selected rules were evaluated in 
terms of knowledge extracted from the data, 
i.e. the conditions set in the rules. For RST and 
DRST rules, the support for each rule was ad-
ditionally defi ned. As a result, it was possible 
to determine the rules with the highest support 
and their detailed analysis (what was done for 
real data). For the FRST method, support for 
rules is not explicitly defi ned, which is why the 
number of rule uses on the test set was used 
analogously to the support (the author’s origi-
nal approach – A. Fiedukowicz 2017). 

3.5. The evaluation of results 

The effectiveness of the computed rules was 
checked based on the test set by selecting 
objects. As the selection can be understood as 
a specifi c (binary) type of classifi cation, a confu-
sion matrix was used to evaluate it (T. Fawcett 
2006). Based on the confusion matrix it is pos-
sible to count several indicators of the classifi -
cation quality. The following were used: 

• Accuracy determines the number of cor-
rectly classifi ed examples in relation to all 
examples: 

• True Positive Rate 
• True Negative Rate
• The Gini Coeffi cient (based on the ROC 

curve, fi g. 5 − Receiver Operating Characte-
ristic):

GC = 1 – the ideal classifi er; here: all objects 
selected or not, as expected, 

GC = 0.5 – random classifi er, giving results 
analogous to class randomization,

GC = 0 – reverse classifi er; here: all objects 
selected or not, contrary to predictions.

The use of the GC factor allows to easily 
compare binary classifi ers, assigning them 
values from 0 to 1 (fi g. 5). 

At the same time, due to the spatial nature of 
the data, quantitative analysis of the results is far 
from suffi cient. Therefore, also visual analysis 
was performed to detect spatial patterns of 
correctly/incorrectly classifi ed objects (fi g. 6). 
This type of analysis can sometimes detect 
patterns which are not visible in quantitative 
data and make adjustments to the model, e.g. by 
introducing to the model an additional attribute 
related to the observed spatial relationship 
(in the case presented in fi gure 6 it could be 
e.g. distance from the forest).

Fig. 4. Division into training and test sets. On the left 
− a random division used for model data, on the right 

− a spatial division used for actual data 
(source: A. Fiedukowicz 2017)

Fig. 5. ROC curve (source: A. Fiedukowicz 2017)
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Visual analysis can also assess whether clas-
sification errors are in a given case key from 
a cartographic point of view or are acceptable. 
For spatial data, an information table constituting 
a classic data model in rough theories, is not 
their full representation.

3.6. Software and algorithms

In order to carry out the research, software 
(often with the author’s modifications) was 
used to calculate decision rules and predict 
the value of decisions based on them. The fol-
lowing were used: 

• for the Rough Set Theory (RST) – the R 
language dedicated to statistical calculations 
(including the RoughSets package),

• for the Dominance Based Rough Set Theory 
(DRST) – the jMAF program,

• For the Fuzzy-Rough Set Theory (FRST) 
– the R language dedicated to statistical calcu-
lations (including the RoughSets package).

Both programs used (R and jMAF) are avail-
able free of charge for non-commercial purposes, 
and the R environment also for commercial 
purposes (GNU license). Both jMAF and the 
RoughSets package were developed by aca-
demic environment as implementations of 
mathematical theories, allowing a wider group 
of people to apply them in practice.

To determine rules using the RST method, two 
LEM and CN2 algorithms were used, which 
have been described in detail by the author 
(M. Fiedukowicz 2017).

4. Results

A detailed analysis of the obtained results 
and illustrations can be found in the author’s 
doctoral dissertation (M. Fiedukowicz 2017). 
The article presents only a summary of quanti-
tative results and selected examples of quali-
tative analysis along with a description.

4.1. Model data

In terms of the number of rules, the DRST 
method is best when model data is used (tab. 1). 

In this method, the average maximum number 
of rules does not exceed 9 (the maximum 
number of rules obtained by this method for 
a set of watercourses in 1:50,000 detail is 18). 
As for the length of rules, the best results are 
obtained using the CN2 algorithm in the RST 
method – in most cases the number of rule con-
ditions does not exceed two (only one excep-
tion was noted, where there were three-element 
rules). The most complex decision systems 
(both in terms of the number of rules and their 
length) were obtained using the FRST method. 
The advantage of this method is the possibility 
of using continuous data, without the need to 
downgrade the measuring scale.

As for the effectiveness of applying the cre-
ated rules on the test set (determined four 

Fig. 6. An example of a visual analysis of classification 
results: grey – objects classified correctly, orange 

– objects classified incorrectly. This shows  
the potential impact of the proximity of another 

object (here: a forest) on the correctness  
of classification (source: A. Fiedukowicz 2017)

Table 1. Averages of minimum and maximum  
numbers most favour and rule lengths for all model 

data (the smallest, able values are in bold)  
(source: A. Fiedukowicz 2017)

method min. no. max. no. min. 
length

max. 
length

RST CN2 8,0 9,8 1,0 2,0

RST LEM2 8,8 10,2 1,0 3,4

DRST 6,2 8,8 1,0 3,2

FRST 64,6 79,4 1,4 10,4
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times as part of cross-validation), it is very high 
for model data. The accuracy for all methods 
except the FRST method in all cases is above 
90%, sometimes even 100% (especially for 
the generalisation of LoD50k-> LoD250k (ta-
bles 2, 3). At the same time, there is reduced 
sensitivity (TPR) for building selection using the 
FRST and RST methods with the LEM2 algo-
rithm (tab. 2) and True Negative Rate (TNR) 
for the selection of LoD50k→250k watercourses 
using the FRST method.

Given the very good results obtained for the 
model data, it was decided to apply the described 
methodology to real data. However, even in 
the case of model data, the FRST method has 
the lowest potential both in terms of the com-
plexity of the decision system and its effective-
ness (quality of classification). 

4.2. Real data 

The presented tests carried out for various 
classes of objects using the three tested rough 

methods allowed to draw conclusions regard-
ing the quality of the performed classification 
and the factors affecting it. Two variants have 
been distinguished for buildings: B – selected 
(k50=1) buildings represented in LoD50k as 
individual buildings, BZ – also selected build-
ings represented in LoD50k as a fragment of 
a built-up area.

The summarized results for real data are pre-
sented in table 4. Table 5 presents the values 
of the Gini Coefficient (GC) for various methods 
and areas as well as the average and median 
of this indicator for individual methods. It was 
also counted (tab. 5) how many times each 
method achieved first and second place in a spe-
cific version of the experiment (for specific 
data, area, variant, etc.) according to the Gini 
Coefficient.

It is worth noting (tab. 5) that the average 
GC for the RST methods with the CN2 algorithm 
and the DRST method is the same, and the 
median is only slightly higher for the DRST 
method. Similarly, each of these two methods 
was the best four times in some variant of the 

Table 2. Averaged results (using a cross-validation) 
for selecting model data from a scale level  

of 1:10,000 to a level of 1: 50,000  
(the method/algorithm is listed in the first column); 

red indicates unacceptable results  
(source: A. Fiedukowicz 2017)

10k buildings rivers roads

ACC CN2 0,98 0,98 0,95

TPR CN2 0,81 0,97 0,95

TNR CN2 0,99 0,98 0,95

ACC LEM2 0,97 0,97 0,97

TPR LEM2 0,46 0,92 0,93

TNR LEM2 1,00 1,00 1,00

ACC DRST 0,98 0,98 0,96

TPR DRST 0,76 0,95 0,91

TNR DRST 0,99 1,00 0,99

ACC FRST 0,78 0,98 0,97

TPR FRST 0,39 1,00 1,00

TNR FRST 0,80 0,97 0,95

Table 3. Averaged results  
(using a cross-validation) for selecting model  

data from LoD50k to LoD250k  
(the method/algorithm is listed in the first column); 

red indicates unacceptable results  
(source: A. Fiedukowicz 2017) 

50k rivers roads

ACC CN2 0,92 1,00

TPR CN2 0,89 0,99

TNR CN2 0,93 1,00

ACC LEM2 0,91 1,00

TPR LEM2 0,86 0,99

TNR LEM2 0,94 1,00

ACC DRST 0,93 1,00

TPR DRST 0,93 1,00

TNR DRST 0,93 1,00

ACC FRST 0,65 0,96

TPR FRST 0,92 0,89

TNR FRST 0,48 1,00
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Table 4. Collected results for real data (source: A. Fiedukowicz 2017)
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Fig. 8. Results for watercourse sections obtained by the DRST method: on the left − the Chocianów area,  
on the right − the Sieniawa area; the selected objects are marked in red (source: A. Fiedukowicz 2017)

Fig. 7. The results for the road sections obtained by the RST method in the area of Chocianów:  
on the left − the CN2 algorithm, on the right − the LEM2 algorithm; at the top − 10k→50k selection,  

at the bottom − 50k→250k selection; the selected objects are marked in red (source: A. Fiedukowicz 2017)
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experiment, while the DRST method was also 
four times in second place (compared to two 
cases of the RST method with the CN2 algorithm). 
This means that the DRST method was the 
best or second best in each of the experiment 
variants. Of the methods tested, these two: 
RST methods with CN2 and DRST algorithms 
give the best results (with a slight advantage of 
the DRST method). The worst results by far 
were obtained for the FRST method.

Quantitative results, however important, do 
not allow a full evaluation of the results of ge-
neralization. The performed qualitative visual 
analysis indicates shortcomings in many cases 
concerning in particular the continuity of the 
road network and river network (fig. 7, 8). The 
results containing discontinuities of these sys-
tems are obviously incorrect from a cartographic 
point of view. However, the developed metho-
dology can still be used to support the carto-
grapher’s work in the tedious, complicated and 
time-consuming generalization process. On 
the other hand, in its present form, especially 
for network objects, it is not suitable to be used 
as the only and final way of selecting topogra-
phic objects. Cartographic editing of pre-selected 
topographic objects requires both further actions 
implemented in so-called post-processing and 
manual editing. 

Regarding the complexity of decision rules 
(examples of rules in table 6), the trends ob-
served in model data were confirmed:

• The simplest in reception and interpretation 
were the RST rules (especially those created 
by the CN2 algorithm).

• The rules of the FRST method were the 
most complex and illegible. It would be advisable 
to round the values of the attributes, which could 

partially improve the readability of the rules 
and increase their level of generalisation.

• The rules of the DRST method were char-
acterised by average complexity. However, 
due to the characteristic way of their forma-
tion, they can be easily simplified (as discussed 
below).

5. Discussion

Non-classical approaches seem to be an 
attractive solution from the point of view of 
automating the generalization process. This is 
because their unusual, ambiguous nature, using 
rough or fuzzy information that is typical of car-
tographic knowledge difficult to formalize in a tra-
ditional way. Fuzzy logic together with linguistic 
variables have been used in the generalisation 
process (e.g. R. Olszewski 2009). However, 
the author’s preliminary research (A. Fieduko-
wicz 2013a) showed difficulty in constructing 
fuzzy rules with a large number of available 
attributes (including native, relational and geo-
metric attributes). Thus, the initial stages of the 
study included the possibility of choosing rele-
vant attributes (reducts) using the Rough Set 
Theory (RST), and then constructing a fuzzy 
rule system based only on previously selected 
attributes. A significant obstacle, however, was 
the inconsistency of the measuring scales 
used in both methods, which meant that the 
quality of the generalisation performed in this 
way was not satisfactory.

Therefore, the next approach used rough 
rules, based on three non-classical logics 
(approaches, set theories): Rough Set Theory, 
Dominance-Based Rough Set Theory, Fuzzy-
Rough Set Theory. First, they were used to se-

Table 6. Examples of rules for the selection of buildings (source: own work, based on A. Fiedukowicz 2017)  

method supp rule

RST CN2 8% IF function is residential and touches_another_building is 1 and area is small 
THEN k50 is 1

RST LEM2 22% IF density_in_100m is high THEN k50 is 1

DRST 31% (touches_another_building >= 1) & (distance_from_centrum_inversed >= 
small) => (K50 >= 1)

FRST – IF function is ~religous and floors~2 and density_in_300m ~513.879 THEN 
k50 = 1
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lect interesting attributes (reducts), including 
attributes describing the spatial context (A. Fiedu-
kowicz 2020), and then rules were constructed in 
measurement scales adapted to earlier reducts.

Rules based on rough sets were not previ-
ously widely used in the generalization of 
geographical information. J. Zhang (2001) con-
ducted work on this subject, and the author also 
did some preliminary research (A. Fiedukowicz 
2013b, 2015b). The theory of rough sets was 
used more often in other aspects of spatial data, 
especially in the non-classical definition of area 
boundaries (e.g. T. Beaubouef, F.E. Petry 2010).

As part of the research work, some interest-
ing methodological issues were also noticed, 
the solution of which could help in the applica-
tion of rough logics, not only in the generaliza-
tion of geographical information. One of such 
issues is the construction of rules in the DRST 
method. As this method assumes a monotonic 
relationship between attributes and the deci-
sion (if the condition ≥ occurs on the left and 
on the right of the rule), the way to artificially 
determine the inverse relationships is to use 
inverted attributes (i.e. with changed monoto-
nicity compared to the original). However, this 
causes interpretation difficulties related to 
reading such rules. They could be avoided by 
secondary inverting of the less than and greater 
than symbols in conditions of inverted attrib-
utes, e.g.

(pow_d ≥ 2) ↔ (pow_d ≤ 2)

This approach would simplify the resulting 
rules, and sometimes even aggregate the con-
ditions for the attribute in the basic and inverted 
versions, if they appear in the same rule, e.g.

(odl_msc ≥ 2) & (odl_msc_d ≥ 3) ↔  
(odl_msc ≥ 2) & (odl_msc ≤ 3) ↔ (2 ≤ odl_msc ≤ 3)

In this way, rules would be easier to both 
read and interpret. It would be possible, also 
when creating reducts, to just write each attrib-
ute only once, regardless of whether it would 
appear in the reduct in the basic version, in-
verted version, or in both. The proposed solu-
tions have the advantage of being relatively 
easy to automate.

Furthermore, a way for determining support 
for rules in the FRST method should be pro-
posed. With the proposed averaging of the 

value of many objects, this could be the number 
of objects used to average the rule conditions, 
which would correspond to the traditional defi-
nition of support. It would also be possible to 
define the support of the rule in a fuzzy man-
ner, taking into account the distribution of the 
values of individual attributes around the ob-
tained average. For example, if 10 objects 
used to create a rule would have exactly the 
same attribute value (equal to the average 
used in the rule), then support would be 10. 
The more diverse the values of the attribute 
around the calculated average, the lower the 
support is. Such a mechanism for determining 
support could also be helpful when creating 
and reducing FRST rules. Unfortunately, the 
number of rule uses in this paper for a given 
rule in the training set do not fulfil the role of 
a criterion for evaluating the rules well enough. 
It is not known whether their use was correct 
(or if it allowed to determine the appropriate 
decision class for the rule). This leads to a situ-
ation where the number of times the rule is 
used is more than the given decision class in 
the test set (which means the rule is being 
used incorrectly). Therefore, it cannot be con-
cluded that the greater the number of uses 
of the rule, the better its quality. This number 
cannot be directly compared with the support 
value determined for the other methods.

Similarly, for the FRST method, it seems 
reasonable to try to use fuzzy and classic rela-
tionship of indistinguishability together. Thanks 
to this, the original nature of the data could 
be maintained: continuous for continuous data 
(fuzzy similarity relationship), nominal for nomi-
nal data (classic indistinguishability relation-
ship). Only an ordinal relationship cannot be 
represented in this method.

It should be remembered that the obtained 
results cannot be evaluated in isolation not 
only from the mathematical approach used, 
but also from the algorithms used and their im-
plementation. While mathematical theories are 
strict (and deterministic), the algorithms used 
in the research are most often heuristic algo-
rithms, and therefore do not necessarily allow 
to determine optimal solutions. Moreover, the 
results of the experiment, and in particular the 
effectiveness of algorithms, is significantly in-
fluenced by the manner and correctness of 
implementation in the used software. The ease 
and intuitiveness of using this software are 
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also significant factors. The lack of a graphical 
user interface when using the R language can 
be an obstacle to the use of this tool by a wider 
group of people without programming skills. On 
the other hand, the open nature of the R lan-
guage provides great flexibility both at the level 
of script creation and in the modification of 
existing packages. In turn, the GUI available in 
jMAF is quite easy to use, but both the input 

formats and the way the output is combined 
are strictly defined and cannot be modified.

6. Conclusions

Rough logic can be used to select objects 
when generalizing geographical information. 
The conducted research indicates the advantage 

Fig. 9. Results of the selection of buildings using the FRST method in relation to the expected value;  
Variant B − parts of the “Village” area containing buildings (source: A. Fiedukowicz 2017)
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of the DRST and RST approaches (with the CN2 
algorithm) due to the quality of the obtained 
selection, the greater simplicity of the decision 
system, and better refined IT tools enabling 
the use of these systems. RST CN2 and DRST 
approaches obtained an average accuracy of 
actual data classification (measured using the 
Gini coefficient) of 0.70.

At this stage, the FRST approach, which is cha-
racterised by the highest complexity of created 
rules and the worst selection results, is not re-
commended. The average accuracy of the 
actual data classification determined for this 
method is 0.58. In addition, the result obtained 
using the FRST method was not the best of 
the results for neither any object class nor the 
test area. This method achieved second place 
just once. In the case of this method, not only 
the approach itself but also the quality of im-
plementation could have an impact on the ob-
tained results – the functions of the R package 
regarding the FRST method are rarely used.

Individual approaches are limited by the need 
to select appropriate measurement scales for 

the attributes used in them. From this point of 
view, the DRST method seems to be the most 
promising. It allows the use of continuous nume-
rical attributes after discretization without losing 
information about the order of classes, attributes 
on the ordinal scale – directly, binary attributes 
– treating them as attributes on the ordinal scale. 
Only attributes on the nominal scale must be 
omitted or artificially ordered.

Particular attention should be paid to the se-
lection of network objects, in which the use of 
only a condition-action approach, without main-
taining consistency of the network, may not 
produce the desired results. Therefore, when 
evaluating the quality of the obtained results, it 
is necessary, in addition to quantitative indica-
tors, to use expert visual evaluation. 

Unlike approaches based on classical logic, 
rough approaches allow the use of incomplete 
or contradictory information. The proposed tools 
can (in their current form) find an auxiliary use 
in the selection of topographic objects, and also 
in other generalisation operators.
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