PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Capacity of Fractographic Analysis for Load-Time History Reconstruction and Fatigue Crack Growth Rate Estimation for the 2024-T3 Aluminium Alloy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The subject of the paper is the considerations for the feasibility of load time history reconstruction on the basis of microfracture analysis for a failed component made of 2024-T3 aluminium alloy that operates under variable amplitude loading. For this goal three different variable amplitude load sequences with single and multiple overloads and underloads were applied to investigate crack growth rate and to examine the images of fatigue striations on the fracture surface of a component. These loads are employed when simulating the fatigue crack behaviour in aeronautical alloys. Microfracture analysis was also used either for learning the interaction of variable amplitude loading for crack growth rate in 2024-T3 alloy or for establishing the relation between surface crack and crack depth growth.
Słowa kluczowe
Rocznik
Tom
Strony
20--36
Opis fizyczny
Bibliogr. 24 poz., rys., wykr.
Twórcy
  • Military University of Technology, Warsaw, Poland
autor
  • Military University of Technology, Warsaw, Poland
autor
  • Military University of Technology, Warsaw, Poland
Bibliografia
  • [1] Kocańda, S. (1990). Metal Fatigue. Part III in Experimental Methods in Mechanics of Solids. Amsterdam-Oxford-New York: Elsevier.
  • [2] Kocańda, D., Kocańda, S., & Torzewski, J. (2002). Fatigue crack growth rate in 2024-T3 aluminium alloy. In: Proceedings of the 19th Symposium on Fatigue and Fracture Mechanics, April 2002, (195-202). Bydgoszcz: ATR.
  • [3] Wanhill, R. J. H. (2002). Flight simulation fatigue crack growth guidelines. In: Proceedings of the 8th International Fatigue Congress, 2-7 June 2002, 1(5), 573-584. Stockholm, Sweden.
  • [4] Spence, S. H., Williams, N. M., Stonham, A. J., Bache, M. R., Ward, A. R., Evans, W. J., Hay, D., Urbani, C., Crawford, B. R., Loader, C., & Clark, G. (2002). Fatigue in the presence of corrosion pitting in an aerospace aluminium alloy. In: Proceedings of the 8th International Fatigue Congress, 2-7 June 2002, 1(5), 701-708. Stockholm, Sweden.
  • [5] Katoh, Y., Nakayama, H., & Tanaka, T. (2002). Fatigue crack growth behaviour of aluminium alloy under three-step varying load. In: Proceedings of the 8th International Fatigue Congress, 2-7 June 2002, 2(5), 1459-1466. Stockholm, Sweden.
  • [6] Sunder, R. (2002). An explanation for the residual stress effect in metal fatigue. In: Proceedings of the 8th International Fatigue Congress, 2-7 June 2002, 5(5), 3339-3350. Stockholm, Sweden.
  • [7] Gangloff, R. P. (2002). Environment sensitive fatigue crack tip process and propagation in aerospace aluminium alloys. In: Proceedings of the 8th International Fatigue Congress, 2-7 June 2002,Vol. 5(5), 3401-3430. Stockholm, Sweden.
  • [8] Forth, S. C., Keat, W. D., & Fawrow, L. H. (2002). Experimental and computational investigation of three-dimensional mixed-mode fatigue. Fatigue and Fracture of Engineering Materials and Structures, 25(1), 3-15.
  • [9] Schijve, J. (2002). Fatigue of structures and materials in the 20th century and the state of the art. In: Proceedings of the 14th Bienniel Conference on Fracture - ECF 14, 2002, Vol. III/III, 211-262.
  • [10] Schijve, J. (2001). Fatigue of structures and materials, Dordrecht, Boston, London: Kluver Academic Publishers.
  • [11] Zhang, X. P., Wang, C. H., Ye, L., & Mai, W. ( 2002). In situ investigation of small fatigue crack growth in poly-crystal and single-crystal aluminium alloys. Fatigue and Fracture of Engineering Materials and Structures, 25(2), 141-150.
  • [12] Kermanidis, A. T., & Pantelakis, S. G. (2001). Fatigue crack growth analysis of 2024-T3 aluminium specimens under aircraft service spectra. Fatigue and Fracture of Engineering Materials and Structures, 24, 699-710.
  • [13] Ranganathan, N. (2002). Certain aspects of variable amplitude fatigue. In: Proceedings of the 8th International Fatigue Congress, 2-7 June, 2002, 1(5), 613-621. Stockholm, Sweden.
  • [14] Brockenbrough, J. R., Bucci, R. J., Kulak, M., Zonker, H. R., Bray, G. H., Heinimann, M. B., & Newman, J.C. (2003). Crack growth prediction methods for spectrum loading to support fatigue and durability damage tolerance evaluation. In: Proceedings of the 22nd Symposium of International Committee on Aeronautical Fatigue - Fatigue of Aeronautical Structures as an Engineering Challenge, 5-9 May 2003, Vol. 1, pp. 14. Lucerne, Switzerland.
  • [15] Goncalves, W., Pramono, A., & Chaves, C. E. (2003). Embraer New Family of Jets-Meeting the Current Fatigue and Damage Tolerance Requirements. In: Proceedings of the 22nd Symposium of International Committee on Aeronautical Fatigue - Fatigue of Aeronautical Structures as an Engineering Challenge, 5-9 May, 2003, Vol 1, pp. 21. Lucerne, Switzerland.
  • [16] Lazzeri, L., & Ratti, G. (2002). Fatigue crack propagation in thin sheets under typical helicopter spectra. In: Proceedings of the 8th International Fatigue Congress, 2-7 June 2002, 1(5), 585-592. Stockholm, Sweden.
  • [17] Iyyer, N. S., Kwon, Y. S., & Phan, N. (2003). P-3C crack growth life predictions under spectrum loading. In: Proceedings of the 22nd Symposium of International Committee on Aeronautical Fatigue - Fatigue of Aeronautical Structures as an Engineering Challenge, 5-9 May 2003, Vol. 2, pp. 18. Lucerne, Switzerland.
  • [18] Skorupa, M. (1996). Empirical trends and prediction models for fatigue crack growth under variable amplitude loading. Petten, Netherlands: Energy Research Foundation. (ECN-R-96-007)
  • [19] Ivanova, V., & Shaniavsky, A. (1998). Quantitative fractography. Metallurgy Press.
  • [20] Kocanda, D., Kocanda, S., & Torzewski, J. (2004). Reconstruction of fatigue crack growth rate for 2024-T3 aluminium alloy sheet on the basis of fractographic analysis. The Archive of Mechanical Engineering, 51(3), 361-376.
  • [21] Hertzberg, R. (1983). Deformation and fracture mechanics of engineering materials, John Wiley & Sons Inc., 2nd revised edition.
  • [22] Karasiewicz, T., Bogdanowicz, Z., & Polanski, J. (2007). The influence of amplitude and load rate on the amount of energy dissipation for aluminium alloy subjected to cyclic torsion. Bulletin of Military University of Technology WAT, 56(4). Warsaw, Poland.
  • [23] Szymczyk, E., Jachimowicz, J., & Bogdanowicz, Z. (2007). Investigations of fatigue crack initiation in rivet-joints. Transactions of the Kielce University of Technology. Mechanics, 4. 125-126. (in Polish). Warsaw, Poland.
  • [24] Bogdanowicz, Z. (2008). Elaboration of the method of aeronautical skin joints lifetime determination taking into account materials and technological features. Sc. Project, (in Polish). Warsaw, Poland: Military University of Technology.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2a3bee2e-3bfd-4a8e-a5e6-1ba94f2e1e57
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.