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Abstract

The paper contains comparing calculations of the stress fields in an elastic plate 
with notch along the arc of a circle, ellipse or parabola obtained by analytic-
numerical method based on complex Kolosov-Mushelishvili potentials and by
numerical variation-difference method. These fields differ by no more than 2%, 
which, in particular, indicates the reliability of such numerical implementation.
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1 Introduction

Investigation of the stress-strain state of the plate structural elements
weakened by notch, [2] is a necessary step in the calculation of their strength 
and reliability. Since these structural elements have finite dimensions or cur-
vilinear boundary, the possibility of the application of analytical methods for 
solving the corresponding boundary value problems [4] is significantly lim-
ited, and in most cases impossible. 

In this paper, we provide comparison of the obtained solutions of plane 
elasticity problems on uniaxial loading of a plate structural element with
notch of an arbitrary smooth contour by analytic-numerical method using the 
complex Kolosov-Mushelishvili potentials [7] and numerical method using 
the variation-difference method [6].
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2 Analytic-numerical method for solving the problem 

Let us find the stress state of a plate of the thickness h , which is simulated 
by the half-plane, on the surface of which a notch is made of an arbitrary 
smooth contour [7]. We assume that the half-plane extends to infinity by nor-
mal stress of value P  (Figure 1), and the boundary of the half-plane with 
notch is free from stresses.

Choose a Cartesian coordinate system Oxy , directing the axis Ox  along 
the straight edge, and the vertical axis  upward. The curve traced by the notch 
is denoted by L , the straight line portion of the boundary of  the half-plane 
by L . The lower half-plane of the plane xOy  is denoted by	��, the upper one

by ��. 

Figure 1. Plate element with notch under uniaxial loading 

According to the formulation of the problem we have the following
boundary conditions:

Lxxyyy  ,0,0  ; LtTN  ,0 ,

where N  and T  are the normal and tangential components of the vector of 
stresses on L  respectively.

To solve the problem, we introduce the complex Kolosov-Mushelishvili
potentials )(z  and )(z  [2] and present them in the form 

2
)()()(,
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)()()( 2121

p
zzz

p
zzz  . 

Here )(2 z  and )(2 z  are complex potentials which are holomorphic in
the lower half-plane and must ensure that the zero boundary conditions on the
axis 0y , are fulfilled, and corrective complex potentials )(1 z  and )(1 z
are responsible for the implementation of the boundary conditions on the sur-
face of the notch. 
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Analytically extending the function )(2 z  from the region	�� over the re-

gion �� and solving the corresponding problem of linear conjugation, we
obtain a singular integral equation [7], which we solve numerically using the
method of mechanical quadratures [5].

3 Variation-difference method for solving the problem

We consider the plane problem of elasticity theory in a finite region V
with curved boundary   (see Figure 1), which simulates the stress-strain state
in a plate with notch of an arbitrary smooth contour. From the mathematical 
point of view it consists in solving equations of equilibrium in a plate [1] 

  0
,, 
jlkijkluC , (1) 

using mixed boundary conditions on the surface 

ijlkijkl PnuC , . (2) 

Here ijklC  are the components of the elastic modulus tensor; jii nPu ,,  are 

the components of the displacement vector, surface forces, and the external 
normal to the surface   respectively; jiji xuu , . We assume the summa-

tion from one to two by the same indices that occur twice in one expression. 
For numerical solution of problem (1) - (2) it is convenient to use its varia-

tion formulation [3], which is to minimize the Lagrangian  




 duPdVWL ii
V

, (3) 

where lkjiijkl uuCW ,,2

1
  is the energy density of elastic deformation.  

We write the Lagrangian (3) in the canonical field 0V , which can be a rec-
tangle or a region composed of rectangles. For this purpose we use a discrete 
bijection mapping of the grid in a curvilinear region V  to a uniform rectangu-
lar grid 21 NN   of the region 0V  (Figure 2) 

)2,1(),( 21  ixx ii  , (4) 
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Then )det( j
iAJ  , m

j
m
iij AAg  , where j

i
j

i xA   is the Jacobi matrix

of this mapping. Using (4) we write the energy density of the deformation W

in the coordinates 
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Figure 2. Mapping of a grid in the curvilinear region � onto the uniform rectangular 
grid in the region ��

Thus, the Lagrangian in the rectangle �0 will look like:

   


duPqdvuuJDL iinkmi
V
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Replacing in (5) all continual function by grid ones, integrals by finite
sums, and derivatives by difference derivatives, we obtain the difference ana-
logue of  the Lagrangian hL0  using the discrete analogue of mapping  (4),
which should not be given analytically, in particular, to be conformal. It is 
sufficient to have one correspondence between nodes in the curvilinear �1 and
model �0 regions. To determine the stationary point ��� we obtain a system of 
linear algebraic equations 

2,1,,,...,2,1,0),( 21   NiiivL hh . (6) 

This approach leads to the impossibility of the use of direct methods for
solving the system (6) due to the accumulation of errors of rounding. How-
ever, it was done with a combined iterative process that implements the 
scheme of the gradient method and the method with Chebyshev set of iterative 
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parameters [8]. The complexity of its practical implementation is selection of 
iterative parameters. 

The described variation-difference method in domains with curved boun-
dary is implemented as a software on FORTRAN. 

4 Results 

For example, the calculations of the components of the stress tensor on the 
notch and near it done, if its boundary is an arc of the circle, ellipse or parab-
ola. 

In Figure 3 and Figure 4 there are shown the graphs of dimensionless 
stresses PP xxxx    00 ,  and Pyyyy  0  for the notches along the 

arc of the circle. Here in after, l2  is  the width of the notch (along the axis 
Ox );   is the depth of the notch (along the axis Oy ); la   is a dimen-

sionless parameter relative absorption; 0
 are dimensionless circumferential 

stresses on the notch, 00 , yyxx   are dimensionless normal stresses on a seg-

ment 00  lxx , ]1,5[0  yy  (along the axis Oy  below the groove). 
The hatched lines represent stress obtained by the analytic-numerical method,
and the solid lines by variation-difference method. 

Figure 3. Stress ���
�  on the notch in an arc of the circle for � � 1at  

different values of �  

In Figure 3, the curves 1 are constructed for 1 , curves 2 for 75,0 curves 

3 for 5,0 . As seen from this figure, the stress 0
  (actually the coefficient

of stress concentration) in the top of the notch ( 0 ) achieves its greatest 
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value in the case of notch along the semicircle (curve 1). And it is only 
slightly higher than typical for the Kirsch problem value 3. 

Here in after, the accuracy of the results is of four significant digits (the er-
ror of about 0,1%). Monitoring convergence and accuracy of analytic-
numerical and numerical solution is conducted by comparing the studied vari-
ables on the grids with single and double number of nodes.  

Figure 4. Stresses ����  and ����  on extension of the axis of symmetry of the notch 
along the arc of a circle �=1 for various values of �.

In Figure 4, the curves 1 are constructed for 1l , curves 2 for 5,1l , 

curves 3 for 2l . As shown in Figure 4, the normal stress 0
xx  much lower of

the notch ( 5y ) is almost equal P , and at the top of the notch it is obvious 

that 00
 xx . 

Figure 5 and Figure 6 show the relevant graphs of stresses 00 , xx  and 
0
yy  for the notches along the arc of the ellipse.
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Figure 5. Stresses ���� on the notch along the arc of the ellipse for � � 1  
and various values of 	�.

In Figure 5, the curves 1 are constructed for 5,0 , curves 2 for 75,0 , 
curves 3 for 1 , curves 4 for 5,1 . 

Figure 6. Stresses ����  and ����  on the extension of the symmetry axis of the notch

along the arc of the ellipse for 1 and various values of l

In Figure 6, the curves 1 are constructed for 5,0l , curves 2 for 1l , 
curves 3 for 25,1l , curves 4 for 2l . 

Figure 7 and Figure 8 show the relevant graphs of stresses 00 , xx  and 
0
yy  for the notches along the arc of the parabola.
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Figure 7. Stresses 0
  on the notch along the arc of the parabola for 1l  and 

various values of 

In Figure 7, the curves 1 are constructed for 5,0 , curves 2 for 1 , 
curves 3 for 2 . 

Figure 8. Stresses 0
xx  and 0

yy  on the extension of the symmetry axis of the 

notch along the arc of the parabola for � � 1  and various values of �

In Figure 8, the curves 1 are constructed for 5,0l , curves 2 for 1l , 
curves 3 for 2l . 

Figure 9 shows the change of the stresses 0
  for the three types of 

notches of the same depth (arcs of circles, parabolas and ellipses that pass 
through three fixed points), which enables us to identify the influence of notch 
shape on the stress state of the plate. 
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Figure 9. Stresses 0
  on the surface of the notches of the same depth along the arc 

of the circle, parabola, and ellipse for r � � 1, � � 1,5.

In Figure 9, curve 1 concerns the circle, curve 2 the parabola, and curve 3
the ellipse.  

5 Conclusions 

As is shown in Figures 5-8, the given stresses at the top of the notch along
the arc of an ellipse or a parabola significantly increase with increasing of the
relative depth of the notch (while increasing its depth or decreasing width). As 
is shown in Figure 9, sharpness of the obviously also enlarges the level of 
stress.

As is shown in Figures 3-9, the stress fields obtained by analytic-numerical
and variation-difference methods differ by no more than 2%. This discrepancy 
can be explained by the fact that the analytical solution domain is unbounded,
while the numerical calculation was carried out, obviously, for a finite field. 

Thus, the developed method of numerical determination of stress and their
concentrations agrees at solving plane elasticity problems in plates with notch. 
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