PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Performance of Modified Slow Sand Filter to Reduce Turbidity, Total Suspended Solids, and Iron in River Water as Water Treatment in Disaster Areas

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study aimed to determine the ability to modify slow sand filter (SSF) media with silica sand or Anadara granosa shells on the efficiency of removal of turbidity, total suspended solids (TSS), and iron in the water of Kali Jagir Surabaya as an effort to achieve clean water in disaster areas, to obtain the influence of variables, and to optimize the obtained results. The research data was processed using Design Expert 11 Software which factors consisted of media type, filtering speed, and running time, for the responses of removal efficiencies for each parameter. The reactor was operated continuously for 6 days, and samples were analyzed for turbidity parameters based on Indonesian standard (SNI 06-6989.25-2005); TSS and Iron Standard Method 23rd 3500A. In addition, the results of the parameters were processed using the Analysis of Variance (ANOVA) to show the significant effect of the variables on the efficiency of the elimination of all parameters. Optimal research was achieved in the SSF reactor unit with silica sand media type and filtering speed of 0.1 m/hour turbidity removal efficiency of 82.07%; TSS 89.5%; and 50.14% iron. However, the reactor that was chosen was the filtering speed of 0.1 m/hour with a flow rate of 22.8 L/day, while the SSF was suitable to be applied in disaster areas, which had a large discharge. Hence, the reactor is suitable for use in water sanitation in disaster areas, namely with a filtering speed of 0.3 m/hour which produces a discharge of 68.4 L/day with variations of sand, geotextile, and silica sand media.
Słowa kluczowe
Rocznik
Strony
1--18
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
  • Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Kampus C UNAIR, Jalan Mulyorejo, Surabaya 60115, Indonesia
  • Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Kampus C UNAIR, Jalan Mulyorejo, Surabaya 60115, Indonesia
  • Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Kampus C UNAIR, Jalan Mulyorejo, Surabaya 60115, Indonesia
  • Department of Civil Engineering, Faculty of Civil and Built Environment, Universiti Tun Hussein Onn, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
  • Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
Bibliografia
  • 1. Andini, I.K.P., Purnomo, A. 2014. Slow Sand Filter Effectiveness in reducing turbidity salinity total dissolved solid and cod in brackish water treatment. Undergraduate Theses of Environmental Engineering, Sepuluh Nopember Institute of Technology, Surabaya.
  • 2. Aziz, H.A. 2014. Reduction of total suspended solid (TSS) and turbidity in volcanic ash contaminated water at Mount Kelud using a single media slow sand filter reactor. Academia, pp. 13.
  • 3. BNBP. 2020. Badan Nasional Penanggulangan Bencana [WWW Document]. URL https://bnpb.go.id/
  • 4. Davarnejad, R., Nasiri, S., 2017. Slaughterhouse wastewater treatment using an advanced oxidation process: Optimization study. Environ. Pollut., 223, 1–10. https://doi.org/10.1016/j.envpol.2016.11.008
  • 5. Dwiratna, S., B, P., M., K.R., D. 2018. Community empowerment in processing flood water into raw water in flood prone areas. J. Sci. Technol. Appl. Soc., 7, 79.
  • 6. Fitriani, N., Kusuma, M.N., Wirjodirdjo, B., Hadi, W., Hermana, J., Ni’matuzahroh, Kurniawan, S.B., Abdullah, S.R.S., Mohamed, R.M.S.R. 2020. Performance of geotextile-based slow sand filter media in removing total coli for drinking water treatment using system dynamics modelling. Heliyon, 6. https://doi.org/10.1016/j.heliyon.2020.e04967
  • 7. Fitriani, N., Ni’matuzahroh, N., O’Marga, T., Radin Mohamed, R., Wahyudianto, F., Imron, M., Isnadina, D.R., Soedjono, E. 2022. Optimization of slow sand filtration for the raw municipal wastewater treatment by using the Blood Cockle (Anadara granosa) shell as an alternative filter media through the response surface methodology. J. Ecol. Eng., 23, 100–111. https://doi.org/10.12911/22998993/147833
  • 8. Galvão, J.L.B., Andrade, H.D., Brigolini, G.J., Peixoto, R.A.F., Mendes, J.C. 2018. Reuse of iron ore tailings from tailings dams as pigment for sustainable paints. J. Clean. Prod., 200, 412–422. https://doi.org/10.1016/j.jclepro.2018.07.313
  • 9. Hidayatullah., N., M.H., 2019. Trial of the effectiveness of silica sand and activated carbon thickness variations from cassava peel on reducing iron. In: Levels in Clean Water in 2019. Thesis. Department of Environmental Health, Jakarta II Health Polytechnic.
  • 10. Hindiyeh, M., Albatayneh, A., Tarawneh, R., Suleiman, S., Juaidi, A., Abdallah, R., Jellali, S., Jeguirim, M., 2021. Preparedness plan for the water supply infrastructure during water terrorism – A case study from Irbid, Jordan. Water, 13, 2887. https://doi.org/10.3390/w13202887
  • 11. Huisman, W. 2013. Slow sand filter drawing. World Health Organisation. Ganeva.
  • 12. Jannah, F.H.S. 2019. Effect of high silica sand media on turbidity removal in the filtration unit for drinking water treatment. Department of Environmental Engineering, Faculty of Landscape Architecture and Environmental Technology, Trisakti University.
  • 13. Kandra, H., McCarthy, D., Deletic, A. 2015. Assessment of the impact of stormwater characteristics on clogging in stormwater filters. Water Resour. Manag., 29, 1031–1048. https://doi.org/10.1007/s11269-014-0858-x
  • 14. Kem, J.A. 1996. Full scale comparative evaluation of two slow sand filter cleaning methods.
  • 15. Kurniawan, S.B., Abdullah, S.R.S., Imron, M.F., Ahmad, A., Mohd Said, N.S., Mohd Rahim, N.F., Mohammad Alnawajha, M., Abu Hasan, H., Othman, A.R., Purwanti, I.F. 2021. Potential of valuable materials recovery from aquaculture wastewater: An introduction to resource reclamation. Aquac. Res. https://doi.org/10.1111/are.15180
  • 16. Kurniawan, S.B., Abdullah, S.R.S., Imron, M.F., Ismail, N. ‘Izzati, Sheikh Abdullah, S.R., Imron, M.F., Ismail, N., Izzati. 2020a. Current state of marine plastic pollution and its technology for more eminent evidence: A review. J. Clean. Prod., 278, 123537. https://doi.org/10.1016/j.jclepro.2020.123537
  • 17. Kurniawan, S.B., Abdullah, S.R.S., Imron, M.F., Said, N.S.M., Ismail, N., ‘Izzati, Hasan, H.A., Othman, A.R., Purwanti, I.F. 2020b. Challenges and opportunities of biocoagulant/bioflocculant application for drinking water and wastewater treatment and its potential for sludge recovery. Int. J. Environ. Res. Public Health, 17, 1–33. https://doi.org/10.3390/ijerph17249312
  • 18. Kurniawan, S.B., Ahmad, A., Imron, M.F., Abdullah, S.R.S., Othman, A.R., Hasan, H.A., 2022a. Potential of microalgae cultivation using nutrient-rich wastewater and harvesting performance by biocoagulants/bioflocculants: Mechanism, multi-conversion of biomass into valuable products, and future challenges. J. Clean. Prod., 365, 132806. https://doi.org/10.1016/j.jclepro.2022.132806
  • 19. Kurniawan, S.B., Imron, M.F., Sługocki, Ł., Nowakowski, K., Ahmad, A., Najiya, D., Abdullah, S.R.S., Othman, A.R., Purwanti, I.F., Hasan, H.A. 2022b. Assessing the effect of multiple variables on the production of bioflocculant by Serratia marcescens: Flocculating activity, kinetics, toxicity, and flocculation mechanism. Sci. Total Environ., 836, 155564. https://doi.org/10.1016/j.scitotenv.2022.155564
  • 20. Kurnyawaty, N., Fitriyana, K., F., R., S.F.P., Andira, A., 2020. Identification of the potential of local blood clam shells in kutai lama village and its utilization to reduce iron levels. Natl. Semin. Res. Community Serv., 978–602–60766–9–4.
  • 21. Mirza, D.H. 2019. Effect of roughing filter and slow sand filter in processing amprong river water, malang into ready-to-drink water on turbidity, color, TSS, and TDS parameters. Essay. Faculty of Science and Technology, Airlangga University, Surabaya.
  • 22. Ni’matuzahroh, N., Fitriani, N., Nuswantara, E.N., Affandi, M., Prasongsuk, S., Kurniawan, S., 2022. Isolation and characterization of schmutzdecke in slow sand filter for treating domestic wastewater. J. Ecol. Eng., 23, 76–88. https://doi.org/10.12911/22998993/153460
  • 23. Nurmalia, D., Elystia, S., Sasmita, A., 2019. The effect of silica sand and zeolite diameter on slow sand filters in reducing turbidity parameters of Siak River water. JOM FTEKNIK, 6.
  • 24. O’Marga, T. 2020. Effect of modification of slow sand filter media with Blood Shells (Anadara granosa) and acclimatization time on total coliform removal in treating domestic wastewater. Essay. Faculty of Science and Technology, Airlangga University, Surabaya.
  • 25. Oyekanmi, A.A., Latiff, A.A.A., Daud, Z., Mohamed, R.M.S.R., Aziz, N.A.A., Ismail, N., Rafatullah, M., Ahmad, A., Hossain, K. 2019. Adsorption of pollutants from palm oil mill effluent using natural adsorbents: Optimization and isotherm studies. Desalin. Water Treat., 169, 181–190. https://doi.org/10.5004/dwt.2019.24689
  • 26. Paramita, P., Wiguna, S., Shabrina, F.Z., Sartimbul, A. 2021. Pemetaan bahaya tsunami wilayah kabupaten serang bagian barat menggunakan sistem informasi geografis. Bul. Oseanografi Mar., 10, 233–241. https://doi.org/10.14710/buloma.v10i3.37228
  • 27. Selintung, M., Syahrir, S. 2019. Study of water treatment through quartz sand filter media. case study of the malimpung river. In: Research Results of the Department of Civil Engineering, Faculty of Engineering. UNHAS.
  • 28. Sianes, A., Vega-Muñoz, A., Tirado-Valencia, P., Ariza-Montes, A. 2022. Impact of the sustainable development goals on the academic research agenda. A scientometric analysis. PLoS One, 17, e0265409. https://doi.org/10.1371/journal.pone.0265409
  • 29. UNDRR, 2020. United Nations Office for Disaster Risk Reduction [WWW Document]. URL https://www.undrr.org/
  • 30. van Leeuwen, K., de Vries, E., Koop, S., Roest, K., 2018. The energy & raw materials factory: role and potential contribution to the circular economy of the Netherlands. Environ. Manage. https://doi.org/10.1007/s00267-018-0995-8
  • 31. Wang, J., de Ridder, D., van der Wal, A., Sutton, N.B., 2020. Harnessing biodegradation potential of rapid sand filtration for organic micropollutant removal from drinking water: A review. Crit. Rev. Environ. Sci. Technol. https://doi.org/10.1080/10643389.2020.1771888
  • 32. Wasesa, D.R., Irianto, D. 2016. Analysis of Causes of Collapse of Jagir River Cliff Repair of Wonokromo River, Surabaya. Sci. J. Civ. Eng. State Univ. Surabaya, 1, 24–32.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2a3900da-0608-4e1d-aa07-b93f30b11ed1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.