Identyfikatory
Warianty tytułu
Biological applications of tetrazoles and their derivatives
Języki publikacji
Abstrakty
Due to the wide range of applications of tetrazoles, in recent years the number of publications and patents describing the synthesis, structural and physicochemical studies of compounds that contain tetrazole fragments in their structure has increased significantly [1]. Tetrazoles are unique compounds containing some of the most electron deficient aromatic rings so that they have one of the highest electron affinity [3]. They also have a whole range of coordination possibilities from simple monodentate ligands to complex polymer systems in which several of nitrogen atoms per tetrazole molecule are involved in the metal coordination. The presence of the metal allows a much wider application, combining the simple geometries and properties of organic compounds with the wealth of structure and properties of the metals. The discussed heterocyclic compounds are not only the most modern high energetic materials for military purposes [5], but also fungicides [6], herbicides [7], a promising component in many modern therapies [8] and drugs [11] (e.g. derivatives of indomethacin, drug for arthritis [1]). One of the most important fields in which tetrazoles and their derivatives are widely used is medicinal chemistry. Because of their high physiological activity and low toxicity, they are versatile in both biochemical and pharmaceutical applications [9]. Moreover, different compounds containing tetrazoles have antimicrobial (Fig. 1) [11, 13–17], antifungal (Fig. 2) [18–20], antiparasitic (Fig. 13–16) [34–36], antivirus (Fig. 17–19) [37–41], analgesic and anti-inflammatory (Fig. 3, 4) [17, 21–24], anti-epileptic, anticonvulsant (Fig. 10–13) [30–33], antihypertensive, antitumor (Fig. 5–9) [25–29], antidiabetic and other properties [12]. This article is a review of the selected tetrazoles and their derivatives in terms of their biological applications.
Wydawca
Czasopismo
Rocznik
Tom
Strony
207--228
Opis fizyczny
Bibliogr. 41 poz., schem.
Twórcy
autor
- Uniwersytet Jagielloński, Wydział Chemii, Zespół Chemii Koordynacyjnej, ul. Ingardena 3, 30-060 Kraków
autor
- Uniwersytet Jagielloński, Wydział Chemii, Zespół Katalizy i Fizykochemii Ciała Stałego, ul. Ingardena 3, 30-060 Kraków
- Uniwersytet Jagielloński, Collegium Medicum, Wydział Farmacji, Katedra Farmakobiologii, ul. Medyczna 9, 30-688 Kraków
Bibliografia
- [1] E. Popova, R. Trifonov, V. Ostrovskii, Arkivoc, 2012, 1, 45.
- [2] L. Frija, A. Ismael, M. Cristiano, Molecules, 2010, 15, 3757.
- [3] Y. Gong, P. Audebert, J. Tang, F. Miomandre, G. Clavier, S. Badre, J. Electroanal. Chem., 2006, 592, 147.
- [4] P. Lin, W. Clegg, R. Harrington, R. Henderson, Dalton Trans., 2005, 14, 2388.
- [5] R. Sivabalan, M. Anniyappan, S. Pawar, M. Talawar, G. Gore, S. Venugopalan, B. Gandhe, J. Hazard. Mater., 2006, 137, 672.
- [6] R. Herbst, C. Froberger, J. Org. Chem., 1957, 22, 1050.
- [7] A. Curtis, N. Jenings, Compr. Heterocycl. Chem. III, 2008, 5, 160.
- [8] G. Agelis, A. Resvani, M. Matsoukas, T. Tselios, K. Kelaidonis, D. Kalavrizioti, D. Vlahakos, J. Matsoukas, Amino Acids, 2011, 40, 411-420.
- [9] P. Gaponik, S. Voitekhovich, O. Ivashkevich, Russ. Chem. Rev., 2006, 75, 507.
- [10] L. Ostrovskii, V. Zubarev, V. Putis, S. Trifonov, R. Popova, E. Pinchuk, Khimicheskaya Promyshlennost, 2005, 82, 605.
- [11] C. Wei, M. Bian, G. Gong, Molecules, 2015, 20, 5528.
- [12] M. Asif, Pharm. Methods, 2014, 5, 1.
- [13] S. Rostom, H. Ashour, H. Razik, A. El Fattah, N. El-Din, Bioorg. Med. Chem., 2009, 17, 2410.
- [14] R. Powers, B. Shoichet, J. Med. Chem., 2002, 45, 3222.
- [15] P.-Y. Lee, W.-N. Chang, C.-H. Lu, M.-W. Lin, B.-C. Cheng, C.-C. Chien, C.-J. Chang, H.-W. Chang, Antimicrob. Agents Chemother., 2003, 51, 957.
- [16] R. Brown, J. Klar, S. Lemeshow, D. Teres, H. Pastides, M. Sands, Arch. Intern. Med., 1986, 146, 2159.
- [17] L. Myznikov, A. Hrabalek, G. Koldobskii, Chem. Heterocycl. Compd., 2007, 43, 1.
- [18] G. Turan-Zitouni, Z. Kaplancikli, M. Yildiz, P. Chevallet, D. Kaya, Eur. J. Med. Chem., 2005, 40, 607.
- [19] T. Ichikawa, T. Kitazaki, Y. Matsushita, H. Hosono, M. Yamada, M. Mizuno, K. Itoh, Chem.Pharm. Bull., 2000, 48, 1947.
- [20] T. Ichikawa, M. Yamada, M. Yamaguchi, T. Kitazaki, Y. Matsushita, K. Higashikawa, K. Itoh, Chem. Pharm. Bull., 2001, 49, 1110.
- [21] S. Akira, K. Takeda, Nat. Rev. Immunol., 2004, 4, 499–511.
- [22] J. Hofmanova, N. Strakova, A. Vaculova, Z. Tylichova, B. Safarikova, B. Skender, A. Kozubik, Mediat. Inflamm. 2014, 848632.
- [23] A. Rajasekaran, P. Thampi, Eur. J. Med. Chem., 2004, 39, 273.
- [24] D. Batt, G. Houghton, J. Roderick, J. Santella, D. Wacker, P. Welch, Y. Orlovsky, E. Wadman, J. Trzaskov, P. Davies, C. Decicco, P. Carter, Bioorg. Med. Chem. Lett., 2005, 15, 787.
- [25] C. Kumar, D.K. Parida, A. Santhoshi, A.K. Kota, B. Sridhar, V.J. Rao, Med. Chem. Commun., 2011, 2, 486.
- [26] R. Romagnoli, P. Baraldi, M. Salvador, D. Preti, M. Tabrizi, A. Brancale, X. Fu, J. Li, S. Zhang, E. Hamel, J. Med. Chem., 2011, 55, 475.
- [27] G. Jedhe, D. Paul, R. Gonnade, M. Santra, E. Hamel, T. Nguyen, G. Sanjayan, Bioorg. Med. Chem. Lett., 2013, 23, 4680.
- [28] Z. Kádár, D. Kovács, É. Frank, G. Schneider, J. Huber, I. Zupkó, T. Bartók, J. Wölfling, Molecules, 2011, 16, 4786.
- [29] A. Jackman, R. Kimbell, G. Aherne, L. Brunton, G. Jansen, T. Stephens, M. Smith, J. Wardleworth, F. Boyle, Clin. Cancer Res., 1997, 3, 911.
- [30] H. Yuan, R. Silverman, Bioorg. Med. Chem. Lett., 2007, 17, 1651–1654
- [31] S. Wang, X. Deng, Y. Zheng, Y. Yuan, Z. Quan, L. Guan, Eur. J. Med. Chem., 2012, 56, 139.
- [32] N. Siddiqui, S. Arya, W. Ahsan, B. Azad, Int. J. Drug Dev. & Res., 2011, 3, 55.
- [33] S. Dong, T. Wang, H. Wang, K. Qian, Z. Zhang, Y. Zuo, G. Luo, Y. Jin, Z. Wang, Arch. Pharm. Chem. Life Sci., 2017, doi:10.1002/ardp.201600389.
- [34] M. Wani, A. Bhat, A. Azam, I. Choi, F. Athar, Eur. J. Med. Chem., 2012, 48, 313.
- [35] M. Wani, A. Bhat, A. Azam, I. Choi, F. Athar, Eur. J. Med. Chem., 2012, 54, 845.
- [36] J. Faria, M. dos Santos, A. Bernardino, K. Becker, G. Machado, R. Rodrigues, Bioorg. Med. Chem. Lett., 2013, 23, 6310.
- [37] R. Raymund, M. Razonable, Mayo Clin Proc., 2011, 86, 1009.
- [38] D. Hutchinson, M. Naylor, Nucl. Acids Res., 1985, 13, 8519.
- [39] K. Yeung, Z. Qiu, Z. Yin, A. Trehan, H. Fang, B. Pearce, Z. Yang, L. Zadjura, C. D’Arienzo, K. Riccardi, Bioorg. Med. Chem. Lett., 2013, 23, 203.
- [40] K. Yeung, Z. Qiu, Z. Yin, A. Trehan, H. Fang, B. Pearce, Z. Yang, L. Zadjura, C. D’Arienzo, K. Riccardi, Bioorg. Med. Chem. Lett., 2013, 23, 209.
- [41] S. Wang, Z. Fang, Z. Fan, D. Wang, Y. Li, X.T. Ji, X. Hua, Y. Huang, T. Kalinina, V. Bakulev, Chin. Chem. Lett., 2013, 24, 8890.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2a34232c-60cf-47c0-bf78-831a66b6242d