Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The design of three-dimensional scaffolds for bone regeneration poses challenges in balancing mechanical strength, porosity and degradability. This study aimed to optimize the geometric parameters of polylactic acid (PLA) scaffolds fabricated via 3D printing, focusing on pore size, porosity, and geometric configurations to enhance mechanical performance and biological functionality. Methods: Two geometric configurations – orthogonal and offset orthogonal – were evaluated with pore sizes ranging from 400–1000 μm and porosities between 55–70%. Finite element analysis (FEA) in ANSYS Workbench was used to simulate mechanical behavior, while the Taguchi experimental design determined the optimal parameter combinations. Statistical analyses, including ANOVA, assessed the significance of each factor. Results: The study identified a pore size of 400 μm as optimal for structural strength, while a porosity of 70% provided a balance between stability and cell growth. Orthogonal geometries distributed stress more uniformly, reducing critical stress concentrations compared to offset configurations. ANOVA revealed that pore size was the most significant factor, followed by porosity and geometry, achieving a model reliability of R2 = 98.42%. Conclusions: The findings highlight the importance of geometric optimization for improving scaffold mechanical properties while maintaining biological functionality. This study offers a robust framework for designing patient-specific scaffolds tailored to bone tissue engineering applications.
Czasopismo
Rocznik
Tom
Strony
69--81
Opis fizyczny
Bibliogr. 34 poz., rys., tab., wykr.
Twórcy
autor
- Escuela de Ingeniería Civil Mecánica, Facultad de Ciencias de la Ingeniería, Universidad Austral de Chile, Chile.
autor
- Instituto de Ingeniería Mecánica, Facultad de Ciencias de la Ingeniería, Universidad Austral de Chile, Chile.
autor
- Instituto de Ingeniería Mecánica, Facultad de Ciencias de la Ingeniería, Universidad Austral de Chile, Chile.
Bibliografia
- [1] ABPEIKAR Z., MILAN P.B., MORADI L., ASADPOUR S., Influence of pore sizes in 3D-scaffolds on mechanical properties of scaffolds and survival, distribution, and proliferation of human chondrocytes, Mech. Adv. Mater. Struct., 2021, 29 (26), 1–12, DOI: 10.1080/15376494.2021.1943077.
- [2] ALIZADEH-OSGOUEI M., LI Y., VAHID A., ATAEE A., WEN C., High strength porous PLA gyroid scaffolds manufactured via fused deposition modeling for tissue-engineering applications, Smart Mater Med., 2021, 2, 15–25, DOI: 10.1016/j.smaim.2020.10.003.
- [3] Ansys Workbench [Internet]. ANSYS, Inc. [cited 2024 Dec. 27]. Available from: https://www.ansys.com
- [4] ARABNEJAD S., JOHNSTON R.B., PURA J.A., SINGH B., TANZER M., PASINI D., High-strength porous biomaterials for bone replacement: A strategy to assess the interplay between cell morphology, mechanical properties, bone ingrowth, and manufacturing constraints, Acta Biomater., 2016, 30, 345–356, DOI: 10.1016/j.actbio.2015.10.048.
- [5] Autodesk Inventor 2024® [Internet]. Autodesk. [cited 2024, Dec. 27].
- [6] BARZGAR TORGHABEH A., BARZGAR TORGHABEH I., KAFAEE RAZAVI M., 3D Printed PLA Porous Scaffolds with Engineered Cell Size and Porosity Promote the Effectiveness of the Kelvin Model for Bone Tissue Engineering, Macromol. Mater. Eng., Aug. 5, 2024, DOI: 10.1002/ mame.202400212.
- [7] BERGSMA J.E., ROZEMA F.R., BOS R.R., BOERING G., Bone reaction to biodegradable poly(L-lactide) implants: A long-term study in rats, Biomaterials, 1995, 16 (1), 25–31, DOI: 10.1016/0142-9612(95)91092-D.
- [8] BHARADWAZ A., JAYASURIYA A.C., Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration, Mater. Sci. Eng. C, 2020, 110, 110698, DOI: 10.1016/j.msec.2020.110698.
- [9] CARTER D.R., HAYES W.C., The compressive behavior of bone as a two-phase porous structure, J. Bone Joint Surg. Am., 1977, 59 (7), 954–962, DOI: 10.2106/JBJS.59.7.954.
- [10] CEA K., DONOSO M., SÉRANDOUR G., MARTÍNEZ G., ALEGRÍA L., Evaluation of parameters in PLA and PCL scaffolds to be used in cartilaginous tissues, Rev. Mex. Ing. Biomed., 2021, 42 (2), 149–159, DOI: 10.17488/RMIB.42.2.12.
- [11] CHEN Y., ZHANG X., PAN L., Fabrication and application of biocompatible and biodegradable materials for bone tissue engineering, Mater. Sci. Eng. C, 2021, 124, 112072, DOI: 10.1016/j.msec.2021.112072.
- [12] FARAH S., ANDERSON D.G., LANGER R., Physical and mechanical properties of PLA, and their functions in widespread applications: A comprehensive review, Adv. Drug. Deliv. Rev., 2016, 107, 367–392, DOI: 10.1016/j.addr.2016.06.018.
- [13] FRANCIS A.P., AUGUSTUS A.R., CHANDRAMOHAN S., BHAT S.A., PRIYA V.V., RAJAGOPALAN R., A review on biomaterialsbased scaffold: An emerging tool for bone tissue engineering, Mater. Today Commun., 2023, 34, 105124, DOI: 10.1016/j.mtcomm.2022.105124.
- [14] GERMAIN L., TREMBLAY N., LABBÉ R., Engineering of tissue scaffolds for skin and bone regeneration, J. Biomed. Mater. Res. Part A, 2018, 106 (7), 1845–1857, DOI: 10.1002/jbm.a.36283.
- [15] GRÉMARE A., GUDURIC V., BAREILLE R., HEROGUEZ V., LATOUR S., L’HEUREUX N. et al., Characterization of poly-lactic acid (PLA) scaffolds for bone tissue engineering, J. Biomater. Sci. Polym. Ed., 2018, 29 (9), 1008–1023, DOI: 10.1080/09205063.2018.1511554.
- [16] HERNÁNDEZ A., REYES R., SÁNCHEZ E., RODRÍGUEZ-EVORA M., DELGADO A., ÉVORA C., Optimization of scaffolds for tissue engineering through the use of the Taguchi method, J. Tissue Eng. Regen. Med., 2015, 9 (5), 626–636, DOI: 10.1002/term.1874.
- [17] KIRILLOVA A., YEAZEL T.R., ASHEGHALI D., PETERSEN S.R., DORT S., GALL K. et al., Fabrication of biomedical scaffolds using biodegradable polymers, Chem. Rev, 2021, 121 (18), 11238–11304, DOI: 10.1021/ acs.chemrev.0C00744.
- [18] LANGER R., VACANTI J.P., Tissue engineering, Science, 1993, 260 (5110), 920–926, DOI: 10.1126/science.8493529.
- [19] LIU Q., WEI F., COATHUP M., SHEN W., WU D., Effect of porosity and pore shape on the mechanical and biological properties of additively manufactured bone scaffolds, Adv. Healthc. Mater., 2023 Sep 9, DOI: 10.1002/ adhm.202301111.
- [20] Minitab® 21.4.1 [Internet]. State College, PA: Minitab, LLC; [cited 2024 Dec. 27]. Available from: https://www.minitab.com
- [21] MOHAMMADI H., SEPANTAFAR M., MUHAMAD N., BAKAR SULONG A., How does scaffold porosity conduct bone tissue regeneration?, Adv. Eng. Mater., 2021, 23 (6), 2100463, DOI: 10.1002/ adem.202100463.
- [22] MORGAN E.F., UNNIKRISNAN G.U., HUSSEIN A.I., Bone mechanical properties in healthy and diseased states, Annu. Rev. Biomed. Eng., 2018, 20, 119–143, DOI: 10.1146/annurevbioeng-071516-045113.
- [23] PARRADO-AGUDELO J.Z., NARVÁEZ-TOVAR C., Mechanical characterization of polylactic acid, polycaprolactone and Lay-Fomm 40 parts manufactured by fused deposition modeling, as a function of the printing parameters, Iteckne, 2019, 16 (2), 111–117, DOI: 10.17488/ Iteckne.16.2.12.
- [24] PUPPI D., MOTA C., GAZZARRI M., DINUCCI D., GLORIA A., MYRZABEKOVA M., AMBROSIO L., CHIELLINI F., Additive manufacturing of wet-spun polymeric scaffolds for bone tissue engineering, Biomed. Microdevices, 2012 Dec, 14 (6), 1115–1127, DOI: 10.1007/S10544-012-9677-0.
- [25] SENATOV F.S., NIAZA K.V., ZADOROZHNYY M.Y., MAKSIMKIN A.V., KALOSHKIN S.D., ESTRIN Y.Z., Mechanical properties and shape memory effect of 3D-printed PLA-based porous scaffolds, J. Mech. Behav. Biomed. Mater., 2016, 57, 139–148, DOI: 10.1016/j.jmbbm.2015.11.036.
- [26] SERRA T., MATEOS-TIMONEDA M.A., PLANELL J.A., NAVARRO M., Fabrication of PLA-based scaffolds using 3D printing, J. Biomed. Mater. Res. Part A, 2013, 101 (5), 1580–1590, DOI: 10.1002/jbm.a.34479.
- [27] SHICK T., ABDUL KADIR A., NGADIMAN N., MAHARAM A., A review of biomaterials scaffold fabrication in additive manufacturing for tissue engineering, J. Bioact. Compat. Polym., 2019, 34 (6), 415–435, DOI: 10.1177/0883911519877426.
- [28] SUAMTE L., TIRKEY A., BARMAN J., BABU P.J., Various manufacturing methods and ideal properties of scaffolds for tissue engineering applications, Smart Mater. Manuf., 2023, 1: 100011, DOI: 10.1016/j.smmf.2022.100011.
- [29] TAJBAKHSH S., HAJIALI F., A comprehensive study on the fabrication and properties of biocomposites of poly(lactic acid)/ceramics for bone tissue engineering, Mater. Sci. Eng. C, 2017, 70, 897–912, DOI: 10.1016/ j.msec.2016.09.008.
- [30] TYLER B., GULLOTTI D., MANGRAVITI A., UTSUKI T., BREM H., Polylactic acid (PLA) controlled delivery carriers for biomedical applications, Adv. Drug. Delivery Rev., 2016, 107, 163–175, DOI: 10.1016/j.addr.2016.06.018.
- [31] UPADHYAY R.K., SRIKAR R., SINGH J., MISHRA R., BALANI K., Mechanical characterization of scaffolds for bone tissue engineering applications, J. Mech. Behav. Biomed. Mater., 2016, 61, 451–465, DOI: 10.1016/j.jmbbm.2016.02.013.
- [32] WU G.H., HSU S.H., Review: Polymeric-based 3D printing for tissue engineering, J. Med. Biol. Eng., 2015, 35 (3), 285–292, DOI: 10.1007/s40846-015-0039-7.
- [33] XU L., ZHUO E.M., SARASINI F., RAZAVI N., Quasi-static behavior of 3D printed lattice structures of various scales, Procedia Struct. Integr., 2021, 33, 578–585, DOI: 10.1016/j.prostr.2021.10.064.
- [34] ZHEN W., YAO Z., JIANG X., WANG J., ZHANG Y., Role of the porous structure of the bioceramic scaffolds in bone tissue engineering, Nat. Precedings, 2010, 5, DOI: 10.1038/NPRE.2010.4141.1.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2a2f4667-7d21-4bdf-980f-51e9ae559a03
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.