PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of Aluminium Oxide Nanoparticles Mass Concentrations on the Tool Wear Values During Turning of Titanium Alloy Under Minimum Quantity Lubrication Conditions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Recently, environmental consciousness has led to the quest for ways to minimise negative elements in machining operations that threaten operator health and the environment. Titanium alloys are hard to cut, thus cooling the cutting zone is essential to reduce tool wear. Variations in Al2O3 nanoparticle concentrations supplied to the MQL cutting fluid affect cutting wedge wear during Ti6Al4V alloy turning. A diameter of 15 nm nanoparticles were utilised at 0.25, 0.5, 0.75, and 1 wt% mass concentrations. In the experiments, the flank face wear band width VBB and crater width KB were measured. Comparisons were also made using dry-cutting tools and the MQL approach without nanoparticles. X-ray microanalysis was used to quantify and qualitatively assess the chemical composition of chosen rake surface micro-areas. Studies showed that Al2O3 nanoparticle mass concentration affects tool wear when turning a hard-to-cut alloy. 0.5 and 0.75 wt% mass concentrations had the lowest flank and rake wear of the four mass concentrations. The SEM examination showed that 0.5 wt% mass concentration decreased adhesive wear the most.
Twórcy
  • Faculty of Mechanical Engineering, University of Zielona Góra
  • Faculty of Mechanical Engineering, University of Zielona Góra
  • Faculty of Mechanical Engineering, University of Zielona Góra
  • Faculty of Mechanical Engineering, Opole University of Technology
  • Department of Mechanical Engineering, Graphic Era (Deemed to be University), Uttrakhand, India
Bibliografia
  • 1. Jamil M., He N., Li L., and Khan A. M., Clean manufacturing of Ti-6Al-4V under CO2 -snow and hybrid nanofluids, Procedia Manufacturing, 2020, 48, 131–140. doi:10.1016/j.promfg.2020.05.029.
  • 2. Nouzil I., Eltaggaz A., Deiab I., and Pervaiz S., Numerical CFD-FEM model for machining titanium Ti-6Al-4V with nano minimum quantity lubrication: A step towards digital twin, Journal of Materials Processing Technology, 2023, 312:117867. doi: 10.1016/j.jmatprotec.2023.117867.
  • 3. Maruda R. W., Feldshtein E., Legutko S., and Krolczyk G. M., Research emulsion mist generation in the conditions of minimum quantity cooling lubrication (MQCL), Tehnički vjesnik-Technical Gazette, 22(5), 1213–1218, 2015. doi: 10.17559/TV.
  • 4. Maruda R. W., Krolczyk G. M., Niesłony P., Krolczyk J. B., and Legutko S., Chip formation zone analysis during the turning of austenitic stainless steel 316L under MQCL cooling condition, Procedia Engineering, 2016, 149:297–304. doi: 10.1016/j.proeng.2016.06.670.
  • 5. Maruda R. W., Legutko S., Krolczyk G. M., Hloch S., and Michalski M., An influence of active additives on the formation of selected indicators of the condition of the X10CrNi18-8 stainless steel surface layer in MQCL conditions, International Journal of Surface Science and Engineering, 2015, 9(5), 452–465. doi: 10.1504/IJSURFSE.2015.072069.
  • 6. Maruda R. W., Krolczyk G. M., Michalski M., Nieslony P., and Wojciechowski S., Structural and microhardness changes after turning of the AISI 1045 steel for minimum quantity cooling lubrication, Journal of Materials Engineering and Performance, 2017, 26(1), 431–438. doi: 10.1007/s11665-016-2450-4.
  • 7. Khalil A. N. M., Ali M. A. M., and. Azmi A. I, Effect of Al 2 O 3 Nanolubricant with SDBS on tool wear during turning process of AISI 1050 with minimal quantity lubricant, Procedia Manufacturing, 2015, 2:130–134. doi: 10.1016/j.promfg.2015.07.023.
  • 8. Maruda R. W., Legutko S.,. Krolczyk G. M, and Raos P, Influence of cooling conditions on the machining process under MQCL and MQL conditions, Tehnicki Vjesnik, 2015, 22(4), 965–970. doi: 10.17559/TV-20140919143415.
  • 9. Bertolini R., Ghiotti A., and Bruschi S., Graphene nanoplatelets as additives to MQL for improving tool life in machining Inconel 718 alloy, Wear, 2021, 476: 203656. doi: 10.1016/j.wear.2021.203656.
  • 10. Maruda R. W., Szczotkarz N., Wojciechowski S., Gawlik J., and Królczyk G. M., Metrological relations between the spray atomization parameters of a cutting fluid and formation of a surface topography and cutting force, Measurement: Journal of the International Measurement Confederation, 2023, 219. doi: 10.1016/j.measurement.2023.113255.
  • 11. Khan M. A, Imran Jaffery S. H.,. Khan M, and Alruqi M., Machinability analysis of Ti-6Al-4V under cryogenic condition, Journal of Materials Research and Technology, 2023, 25:2204–2226. doi: 10.1016/j.jmrt.2023.06.022.
  • 12. Gunan F.,. Kivak T, Yildirim C. V., and Sarikaya M., Performance evaluation of MQL with AL2O 3 mixed nanofluids prepared at different concentrations in milling of Hastelloy C276 alloy, Journal of Materials Research and Technology, 9(5), 10386–10400, 2020, doi: 10.1016/j.jmrt.2020.07.018.
  • 13. Leksycki K.and Królczyk J. B., Comparative assessment of the surface topography for different optical profilometry techniques after dry turning of Ti6Al4V titanium alloy, Measurement: Journal of the International Measurement Confederation, 2021, 169. doi: 10.1016/j.measurement.2020.108378.
  • 14. Shokrani A., Al-samarrai I., and Newman S. T., Hybrid cryogenic MQL for improving tool life in machining of Ti-6Al-4V titanium alloy, Journal of Manufacturing Processes, 2019, 43: 229–243. doi: 10.1016/j.jmapro.2019.05.006.
  • 15. Xu J., Ji M., Chen M., and El Mansori M., Experimental investigation on drilling machinability and hole quality of CFRP/Ti6Al4V stacks under different cooling conditions, International Journal of Advanced Manufacturing Technology, 2020, 109(5–6), 1527–1539, doi: 10.1007/s00170-020-05742-8.
  • 16. Singh H., Sharma V. S., Singh S., and Dogra M., Nanofluids assisted environmental friendly lubricating strategies for the surface grinding of titanium alloy: Ti6Al4V-ELI, Journal of Manufacturing Processes, 39:241–249, 2019. doi: 10.1016/j.jmapro.2019.02.004.
  • 17. Pimenov D. Y., et al., Improvement of machinability of Ti and its alloys using cooling-lubrication techniques: A review and future prospect, Journal of Materials Research and Technology, 2021, doi: 10.1016/j.jmrt.2021.01.031.
  • 18. Leksycki K., et al., Corrosion resistance and surface bioactivity of ti6al4v alloy after finish turning under ecological cutting conditions, Materials, 2021, 14(22). doi: 10.3390/ma14226917.
  • 19. Venkata Ramana M., Optimization and influence of process parameters on surface roughness in turning of titanium alloy under different lubricant conditions, Materials Today: Proceedings, 2017, 49(8), 8328–8335. doi: 10.1016/j.matpr.2017.07.176.
  • 20. Leksycki K., Feldshtein E., Maruda R. W., Khanna N., Królczyk G. M., and Pruncu C. I., An insight into the effect surface morphology, processing, and lubricating conditions on tribological properties of Ti6Al4V and UHMWPE pairs, Tribology International, 2022, 170, 1–10. doi: 10.1016/j.triboint.2022.107504.
  • 21. Leksycki K. et al., Evaluation of tribological interactions and machinability of Ti6Al4V alloy during finish turning under different cooling conditions, Tribology International, 2023, 189. doi: 10.1016/j.triboint.2023.109002.
  • 22. Nandgaonkar S., Gupta T. V. K., and Joshi S., Effect of water oil mist spray (WOMS) cooling on drilling of Ti6Al4V alloy using ester oil based cutting fluid, Procedia Manufacturing, 2016, 6:71–79. doi: 10.1016/j.promfg.2016.11.010.
  • 23. Lindvall R., Lenrick F., Persson H., M’Saoubi R., Ståhl J. E., and Bushlya V., Performance and wear mechanisms of PCD and pcBN cutting tools during machining titanium alloy Ti6Al4V, Wear, 2020, 454–455:203329. doi: 10.1016/j.wear.2020.203329.
  • 24. Nam J., Kim J. W., Kim J. S., Lee J., and Lee S. W., Parametric analysis and optimization of nanofluid minimum quantity lubrication micro-drilling process for titanium alloy (Ti-6Al-4V) using response surface methodology and desirability function, Procedia Manufacturing, 2018, 26: 403–414. doi: 10.1016/j.promfg.2018.07.048.
  • 25. Şirin Ş. and Kıvak T., Effects of hybrid nanofluids on machining performance in MQL-milling of Inconel X-750 superalloy, Journal of Manufacturing Processes, 2021, 70: 163–176. doi: 10.1016/j.jmapro.2021.08.038.
  • 26. Singh R., Progress of environment friendly cutting fluids/solid lubricants in turning-A review, Materials Today: Proceedings, 2020, 37:3577–3580, doi: 10.1016/j.matpr.2020.09.585.
  • 27. Maruda R. W. et al., Evaluation of tool wear during turning of Ti6Al4V alloy applying MQL technique with Cu nanoparticles diversified in terms of size, Wear, 2023, 532–533. doi: 10.1016/j.wear.2023.205111.
  • 28. Yi S., Li J., Zhu J., Wang X., Mo J., and Ding S., Investigation of machining Ti-6Al-4V with graphene oxide nanofluids: Tool wear, cutting forces and cutting vibration, Journal of Manufacturing Processes, vol. 49, no. July 2019, 35–49, 2020. doi: 10.1016/j.jmapro.2019.09.038.
  • 29. Anandan V., Naresh Babu M., Vetrivel Sezhian M., Yildirim C. V., and Dinesh Babu M., Influence of graphene nanofluid on various environmental factors during turning of M42 steel, Journal of Manufacturing Processes, 2021, 68: 90–103, doi: 10.1016/j.jmapro.2021.07.019.
  • 30. Makhesana M. A., Patel K. M, and Khanna N., Analysis of vegetable oil-based nano-lubricant technique for improving machinability of Inconel 690, Journal of Manufacturing Processes, 2022, 77:708–721, doi: 10.1016/j.jmapro.2022.03.060.
  • 31. Zhang G., et al. Effect of SiC nanofluid minimum quantity lubrication on the performance of the ceramic tool in cutting hardened steel, Journal of Manufacturing Processes, 2022, 84:539–554. doi: 10.1016/j.jmapro.2022.10.033.
  • 32. Teo J. J., Olugu E. U, Yeap S. P., Abdelrhman A. M, and Aja O. C., Turning of Inconel 718 using Nano-Particle based vegetable oils, Materials Today: Proceedings, 2020, 48: 866–870. doi: 10.1016/j.matpr.2021.02.480.
  • 33. Khanafer K.and Vafai K., Analysis of turbulent two-phase flow and heat transfer using nanofluid, International Communications in Heat and Mass Transfer, 2021, 124: 105219. doi: 10.1016/j.icheatmasstransfer.2021.105219.
  • 34. Tiwari S., Amarnath M., and Gupta M. K., Synthesis, characterization, and application of Al2 O 3 /coconut oil-based nanofluids in sustainable machining of AISI 1040 steel, Journal of Molecular Liquids, 2023, 386:122465. doi: 10.1016/j.molliq.2023.122465.
  • 35. Sharma A. K., Singh R. K., Dixit A. R., and Tiwari A. K., Characterization and experimental investigation of Al2O 3 nanoparticle based cutting fluid in turning of AISI 1040 steel under minimum quantity lubrication (MQL), Materials Today: Proceedings, 2016, 3(6), 1899–1906. doi: 10.1016/j.matpr.2016.04.090.
  • 36. Pal A., Chatha S. S., and Sidhu H. S., Performance evaluation of the minimum quantity lubrication with Al2O 3- mixed vegetable-oil-based cutting fluid in drilling of AISI 321 stainless steel, Journal of Manufacturing Processes, 2021, 66:238–249. doi: 10.1016/j.jmapro.2021.04.024.
  • 37. Venkatesan K., Devendiran S., Ghazaly N. M., Rahul R., and Mughilan T., Optimization of cutting parameters on turning of incoloy 800H using Al 2 O 3 nanofluid in coconut oil, Procedia Manufacturing, 30:268–275, 2019. doi: 10.1016/j.promfg.2019.02.039.
  • 38. Yıldırım Ç. V., Sarıkaya M., Kıvak T., and Şirin Ş., The effect of addition of hBN nanoparticles to nanofluid-MQL on tool wear patterns, tool life, roughness and temperature in turning of Ni-based Inconel 625, Tribology International, 134:443–456, 2019. doi: 10.1016/j.triboint.2019.02.027.
  • 39. Song X., Takahashi Y., He W., and Ihara T., Study on the protective effect of built-up layer in dry cutting of stainless steel SUS304, Precision Engineering, 2020, 65: 138–148. doi: 10.1016/j.precisioneng.2020.05.010.
  • 40. Kumar Sharma A., Kumar Tiwari A., Rai Dixit A., and Kumar Singh R., Measurement of machining forces and surface roughness in turning of AISI 304 steel using alumina-MWCNT hybrid nanoparticles enriched cutting fluid, Measurement: Journal of the International Measurement Confederation, 2020, 150: 107078. doi: 10.1016/j.measurement.2019.107078.
  • 41. Vasu V. and Pradeep Kumar Reddy G., Effect of minimum quantity lubrication with Al2O 3 nanoparticles on surface roughness, tool wear and temperature dissipation in machining Inconel 600 alloy, Proceedings of the Institution of Mechanical Engineers Part N Journal of Nanoengineering and Nanosystems, 2011, 225(1), 3–16. doi: 10.1177/1740349911427520.
  • 42. Venkatesan K., Mathew A. T., Devendiran S., Ghazaly N. M., Sanjith S., and Raghul R., “Machinability study and multi-response optimization of cutting Surface roughness and tool wear on optimization CNC turned Inconel Machinability study and of cutting in Coconut superalloy using Al 2 O 3 Nanofluids and tool wear on CNC turned Inconel in Coc, Machinability study and multi-response optimization of cutting force, Surface roughness and tool wear on CNC turned Inconel 617 superalloy using Al2 O3 Nanofluids in Coconut oil, Procedia Manufacturing, 2019, 30: 396–403. doi: 10.1016/j.promfg.2019.02.055.
  • 43. Pal A., Chatha S. S., and. Sidhu H. S, Experimental investigation on the performance of MQL drilling of AISI 321 stainless steel using nano-graphene enhanced vegetable-oil-based cutting fluid, Tribology International, 2020, 151: 106508. doi: 10.1016/j.triboint.2020.106508.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2a2cc5fb-a855-49af-bbf7-485e02b06f12
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.