PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Some generalized double lacunary Zweier convergent sequence spaces

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We introduce generalized double lacunary Zweier convergent sequence spaces over n-normed spaces via a sequence of Orlicz functions. We alsomake an e×ort to study some topological properties and inclusion relations between these spaces. Furthermore, we study the concept of double lacunary statistical Zweier convergence over n-normed spaces.
Rocznik
Strony
185--207
Opis fizyczny
Bibliogr. 29 poz.
Twórcy
autor
  • School of Mathematics Shri Mata Vaishno Devi University, Katra-182320, J& K, India
autor
  • School of Mathematics Shri Mata Vaishno Devi University, Katra-182320, J& K, India
Bibliografia
  • [1] A. Alotaibi, S. A. Mohiuddine, and M. Mursaleen, Statistical convergence of double sequences in locally solid Riesz spaces, Abstract Appl. Anal. (2012), Art. ID 719729, 9.
  • [2] T. J. Bromwich, An introduction to the theory of infinite series, Macmillan and Co. Ltd. 1965, New York.
  • [3] K. Ebadullah, A. Esi, N. Khan, V. A. Khan, and M. Shafiq, On paranorm Zweier I-convergent sequence spaces, J. Math. (2013), Art. ID 613501, 6.
  • [4] K. Ebadullah, A. Esi, V. A. Khan, and M. Shafiq, On some Zeweir I-convergent sequence spaces defined by a modulus function, Afr. Mat. 26 (2015), no. 1-2,115-125, DOI 10.1007/s13370-013-0186-y.
  • [5] O. H. Edely and M. Mursaleen, Statistical convergence of double sequences, J. Math. Anal. Appl. 288 (2003), no. 1, 223-231, DOI 10.1016/j.jmaa.2003.08.004.
  • [6] A. Esi and A. Sapsizoglu, On some lacunary a-strong Zweier convergent sequence spaces, Romai J. 8 (2012), no. 2, 61-70.
  • [7] A. Esi and M. Acikgoz, On some double lacunary strong Zweier convergent sequence spaces, An. Univ. Craiova Ser. Mat. Inform. 40 (2013), 121-127.
  • [8] M. Et and R. Çolak, On generalized difference sequence spaces, Soochow J. Math. 21 (1995), 377-386.
  • [9] A. R. Freedman, J. J. Sember, and M. Raphael, Some Cesaro type summability spaces, Proc. London Math. Soc. 37 (1978), 508-520, DOI 10.1112/plms/s3-37.3.508.
  • [10] S. Gähler, Lineare 2-Normierte Räume, Math. Nachr. 28 (1965), 1-43.
  • [11] H. Gunawan, On n-innerproduct, n-norms, and the Cauchy-Schwartz inequality, Sci. Math. Jpn. 5 (2001), 47-54.
  • [12] H. Gunawan, The space of p-summable sequences and its natural n-norm, Bull. Aust. Math. Soc. 6 (2001), 137-147, DOI 10.1017/S0004972700019754.
  • [13] H. Gunawan and M. Mashadi, On n-normed spaces, Int. J. Math. Math. Sci. 27 (2001), 631-639, DOI 10.1155/S0161171201010675.
  • [14] A. Gupta, K. Raj, and S. K. Sharma, Some difference paranormed sequence spaces over n-normed spaces defined by Musielak-Orlicz function, Kyungpook Math. J. 54 (2014), 73-86, DOI 10.5666/KMJ.2014.54.1.73.
  • [15] G. H. Hardy, On the convergence of certain multiple series, Proc. Camb. Phil. Soc. 19 (1917), 86-95, DOI 10.1112/plms/s2-1.1.124.
  • [16] H. Kizmaz, On certain sequence spaces, Canad. Math. Bull. 24 (1981), 169-176, DOI 10.4153/CMB-1981-027-5.
  • [17] J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces, Israel J. Math. 10 (1971), 379-390, DOI 10.1007/BF02771656.
  • [18] L. Maligranda, Orlicz Spaces and Interpolation, Seminars in Mathematics, vol. 5, Universidade Estadual de Campinas, Departamento de Matemática, Campinas 1989.
  • [19] A. Misiak, n-inner product spaces, Math. Nachr. 140 (1989), 299-319, DOI 10.1002/mana.19891400121.
  • [20] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Mathematics, vol. 1034, Springer Verlag 1983, DOI 10.1007/BFb0072210.
  • [21] A. Pringsheim, Zur Theorie der zweifach unendlichen Zahlenfolgen, Math. Ann. 53 (1900), 289-321, DOI 10.1007/BF01448977.
  • [22] K. Raj and S. K. Sharma, Some multiplier double sequence spaces, Acta Math. Vietnam. 37 (2012), 391-406.
  • [23] K. Raj and S. K. Sharma, Some difference sequence spaces defined by Musielak-Orlicz functions, Math. Pan- non. 24 (2013), 33-43.
  • [24] K. Raj and S. K. Sharma, Double sequence spaces over n-normed spaces, Arch. Math. (Brno) 50 (2014), 7-18, DOI 10.5817/AM2014-2-65.
  • [25] E. Sava§ and R. F. Patterson, On some double almost lacunary sequence spaces defined by Orlicz functions, Filomat 19 (2005), 35-44.
  • [26] E. Savaş and R. F. Patterson, Double sequence spaces defined by Orlicz functions, Iran. J. Sci. Technol. Trans. A Sci. 31 (2007), no. A2,183-188.
  • [27] E. Savaş, On some new double lacunary sequence spaces via Orlicz function, J. Comput. Anal. Appl. 11 (2009), no. 3, 423-430.
  • [28] M. Şengonul, On the Zweier sequence space, Demonstr. Math. 40 (2007), 181-196.
  • [29] A. Wilansky, Summability through Functional Analysis, North-Holland Math. Stud., vol. 85 1984.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2a2b82dd-e2d1-4230-8a5a-2c3232a2b650
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.