PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Computational study of a combustion process in a turbine engine combustor

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A computational study of the combustion process in a GTD-350 turbine engine combustor is presented. The numerical grid generation process and the optimization of its density are described. For the assumed boundary conditions, numerical simulations of fuel dispersing, mixing and combustion process in the combustor were performed with the use of Fluent code. The numerical simulations were conducted for different cone angles of spraying fuel and for different mean droplet diameters of fuel spray. The work ends with the discussion of results, in particular concerning the quality and stability of the combustion process in the engine combustor.
Słowa kluczowe
Rocznik
Strony
11--26
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
autor
  • Warsaw University of Technology, Institute of Heat Engineering Nowowiejska 21-25, 00-665 Warsaw
Bibliografia
  • 1. Dzierżanowski P., Kordziński W., Otyś.J., Szczeciński S., Wiatrek R., Turbinowe silniki śmigłowe i Śmigłowcowe, Wydawnictwa Komunikacji i Łączności, Warszawa 1985.
  • 2. Balicki W., Korczewski Z., Szczeciński S., Główne kierunki rozwoju i zastosowań turbinowych silników spalinowych, Zeszyty naukowe AMW, 2008.
  • 3. Wytwórnia Sprzętu Komunikacyjnego „PZL-Rzeszów” S.A, Instrukcja eksploatacji i obsługi technicznej silnika GTD-350, Rzeszów, 1975.
  • 4. Walsh Ph. and Fletcher P., Gas Turbine Performance, 2nd Edition, Wiley-Blackwell, Limited, 2004
  • 5. Mattingly J. D., Elements of Propulsion: Gas Turbines and Rockets, AIAA Education Series, 2006.
  • 6. Sterkenburg R. & Wild T., Aircraft Turbine Engines, Avotek, 2009.
  • 7. http://www.rolls-royce.com
  • 8. Lee H. S. and Yoon J. J., The Study on Development of Low NOx Combustor with Lean Burn Characteristics for 20kW class Microturbine. Proceedings of ASME Turbo Expo, 14--17 June, Viena, Austria, 2004.
  • 9. Gurrappa I. and Rao A. S., Thermal barrier coatings for enhanced efficiency of gas turbine engines, Surface and Coatings Technology, Volume 201, Number 6, pages 3016--3029, 2006.
  • 10. Praca zbiorowa pod red. Orkisza M., Turbinowe silniki lotnicze w ujęciu problemowym, Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne, Lublin, 2000.
  • 11. Lefebvre A. H., Gas Turbine Combustion, Taylor & Francis, 1999.
  • 12. Łapucha R., Komory spalania silników turbinowo-odrzutowych, Biblioteka Naukowa Instytutu Lotnictwa, Warszawa, 2004.
  • 13. Gieras M., Komory spalania silników turbinowych – organizacja procesów spalania, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, 2010.
  • 14. Balicki W., Szczeciński S., Diagnozowanie lotniczych silników turbinowych, Biblioteka Naukowa Instytutu Lotnictwa, Warszawa, 2001
  • 15. Zelenay K., Pintara J., Rozmus K., Moszkowicz E., Witek T., Jaworski M., Próby hamowniane pierwszego prototypu silnika K-15, Sprawozdanie Instytutu Lotnictwa, Nr K15.12.60, Warszawa, 1998.
  • 16. Chin J. S., Atomization study in Jet Propulsion Lab. BIAA survey report. International Journal of Turbo and Jet-Engines. Vol. 6, No. 3--4, pp. 205--219, 1989.
  • 17. Lefevbre A. H., Airblast atomization. Progress in Energy Combustion Science, Vol. 6, pp. 233--261. 1980.
  • 18. Adachia S., Iwamotoa A., Hayashib S., Yamadab H. and Kaneko S. Emissions in combustion of lean methane-air and biomass-air mixtures supported by primary hot burned gas in a multi-stage gas turbine combustor. Proceedings of the Combustion Institute. Vol. 31, No. 2, pp. 3131--3138, 2007
  • 19. Boudier G., Gicquel L. Y. M., Poinsot T., Bissieres D. and Berat C., Comparison of {les}, {rans} and experiments in an aeronautical gas turbine combustion chamber, Proceedings of the Combustion Institute, Vol. 31, No 2, pp. 3075--3082, 2007.
  • 20. Colin O., Pires da Cruz A., Jay S., Detailed chemistry-based auto-ignition model including low temperature phenomena applied to 3-D engine calculations, Proceedings of the Combustion Institute 30, pp. 2649–2656, 2005.
  • 21. Colin O. and Benkenida A., The 3-Zones Extended Coherent Flame Model (ECFM3Z) for Computing Premixed/Diffusion Combustion, Oil & Gas Science and Technology, Vol. 59, No. 6, pp. 593-609, 2004.
  • 22. Gonzalez Toro C. A, Wong KC., Armfield S., Computational study of a miero-turbine engine eombuslor liS ing Large Eddy Simulation and Reynolds Averaged turbulenee models, ANZIAM Journal, Vol 49,2007
  • 23. Tuccillo R. and Cameretti M. C., Comparing different solutions for the micro-gas turbine comhustor. Proceedings of ASME Turbo Expo. 14--17 June, Viena, Austria, 2004.
  • 24. Schildmacher K. U, Hoffmann A, Selle L., Koch R., Schulz c., Bauer H. H., Poinsot T., Krebs W. and Prade B., Unsteadyflame and flow field interaetion of a premixed model gas turbine bumer, Proceedings of the Combustion Institute, Vol. 31, No 2, pp. 3197--3205,2007.
  • 25. Ham F., Apte S., Iaccarino G., Wu X., Hernnann M., Constantinescuy G., Maheshz Kand Moin P., Unstructured {les} of reacting Multiphase flows in realistic gas turbine combustors, In Centerfor Turbulence Research, Annual Research Briefs, 2003.
  • 26. James S., Zhu J. and Anand M. S., Large-Eddy Simulations as a Design Toolfor Gas Turbine Combustion Systems, AIAA JOURNAL, Vol. 44, No. 4, 2006.
  • 27. Reitz R. D., Modeling atomization processes in high-pressure vaporizing sprays, Atomization and Spray Technology, Vol. 3,pp. 309--337,1987.
  • 28. Wegner B., Kempf A, Schneider C., Sadiki A, Schafer M., Large eddy sintuiarion of combustion proeesses under gas turbine conditions - Progress in Computational Fluid Dynamie, An Int. J. Vo1.4, No3/4/5, pp. 257-263,2004.
  • 29. Gieras M. and Stańkowski T., Computational study of an aerodynamie flow through a micro-turbine engine combustor, Journal of Power Technologies, 92 (2), pp. 68-79, 2012.
  • 30. M. Muszyński, M. Orkisz, Modelowanie turbinowych silników odrzutowych, Biblioteka Naukowa Instytutu Lotnictwa, Warszawa, 1997.
  • 31. Fluent, Users Guide, Tutorial Guide, Ansys Inc., 2010.
  • 32. Gieras M., Computational study of an aerodynamie flow through a turbine engine combustor, Archivum Combustionis , (in press).
  • 33. Launder B. E. and Spalding D. B., The Numerical Computation ofTurbulent Flows, Computer Methods in Applied Mechanics and Engineering, 3, pp.269-289, 1974.
  • 34. Gut Z., Wołański P., Diagnostic of combustion process im' ide the turbojet combustion chamber by Eleetrical Capacilance Tomography. 19th ISABE Conference, Montreal, Kanada, 2009.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2a2586c8-76a0-4900-8cc4-1d4c44fac72b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.