PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Thermodynamic analysis of a new dual evaporator CO2 transcritical refrigeration cycle

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, a new dual-evaporator CO2 transcritical refrigeration cycle with two ejectors is proposed. In this new system, we proposed to recover the lost energy of condensation coming off the gas cooler and operate the refrigeration cycle ejector free and enhance the system performance and obtain dual-temperature refrigeration simultaneously. The effects of some key parameters on the thermodynamic performance of the modified cycle are theoretically investigated based on energetic and exergetic analysis. The simulation results for the modified cycle indicate more effective system performance improvement than the single ejector in the CO2 vapor compression cycle using ejector as an expander ranging up to 46%. The exergetic analysis for this system is made. The performance characteristics of the proposed cycle show its promise in dual-evaporator refrigeration system.
Słowa kluczowe
Rocznik
Strony
39--62
Opis fizyczny
Bibliogr. 32 poz., rys., tab., wz.
Twórcy
  • National Engineering School of Tunis ENIT, BP 37 1002 Runis, Tunisia
  • National Engineering School of Tunis ENIT, BP 37 1002 Runis, Tunisia
Bibliografia
  • [1] Radermacher R., Kim K.: Domestic refrigerators: recent developments. Int. J. Refrig. 19(1996), 1, 61–69.
  • [2] Liu F., Groll E.A.: Study of ejector efficiencies in refrigeration cycles. Appl. Therm. Eng. 52(2013), 2, 360–370.
  • [3] Chunnanond K., Aphornratana S.: Ejectors: applications in refrigeration technology. Renew. Sust. Energ. Rev. 8(2004), 2, 129–155.
  • [4] Chen X., Omer S., Worall M., Riffat S.: Recent developments in ejector refrigeration technologies. Renew. Sust. Energ. Rev. 19(2013), 629–651.
  • [5] Groll E.A., Kim J-H.: Review article: review of recent advances toward transcritical CO2 cycle technology. HVAC&R Res 13(2007), 3, 499–520.
  • [6] Lu Y., He W., Wu Y., Ji W., Ma C., Guo H.: Performance study on compressed air refrigeration system based on single screw expander. Energy 55(2013), 762-768.
  • [7] Yang J.L., Ma Y.T., Liu S.C.: Performance investigation of transcritical carbon dioxide two-stage compression cycle with expander. Energy 32(2007), 3, 237–245.
  • [8] Kozioł J., Gazda W., Wilżyński Ł.: Energy efficiency for the transcritical compression CO2 cycle with the use of the ejector as the first stage of the compression. Arch. Thermodyn. 31(2010), 4, 61–69.
  • [9] Dudar A., Butrymowicz D., Śmierciew K., Karwacki J.: Exergy analysis of operation of two-phase ejector in compression refrigeration systems. Arch. Thermodyn. 34(2013), 4, 107–122.
  • [10] Liu J.P., Chen J.P., Chen Z.J.: Thermodynamic analysis on trans-critical R744 vapor compression/ejection hybrid refrigeration cycle. In: Proc. Fifth IIR-GUSTAV Lorentzen Conference on Natural Working Fluids, Guangzhou 2002.
  • [11] Yari M., Sirousazar M.: Cycle improvements to ejector-expansion transcritical CO2 two-stage refrigeration cycle. Int. J. Energy Res. 32(2008), 7, 677–687.
  • [12] Sun F.T., Ma Y.T.: Thermodynamic analysis of transcritical CO2 refrigeration cycle with an ejector. Appl. Therm. Eng. 31(2011), 6-7, 1184–1189.
  • [13] Elbel S., Hrnjak P.: Experimental validation of a prototype ejector designed to reduce throttling losses encountered in transcritical R744 system operation. Int. J. Refrig. 31(2008), 3, 411–422.
  • [14] Manjili F.E, Yavari M.A.: Performance of a new two-stage multi-intercooling transcritical CO2 ejector refrigeration cycle. Appl. Therm. Eng. 40(2012), 202–209.
  • [15] Li D.Q., Groll E.A.: Transcritical CO2 refrigeration cycle with ejector-expansion device. Int. J. Refrig. 28(2005), 5, 766–773.
  • [16] Sharma V., Fricke B., Bansal P.: Comparative analysis of various CO2 configurations in supermarket refrigeration systems. Int. J. Refrig. 46(2014), 86–99.
  • [17] Shin E., Park C., Cho H.: Theoretical analysis of performance of a two-stage compression CO2 cycle with two different evaporating temperatures. Int. J. Refrig. 47(2014), 164–175.
  • [18] Elakdhar M., Mehdi E., Kairouani L.: Analysis of a compression-ejection cycle for domestic refrigeration. Ind. Eng. Chem. Res. 46(2007), 13, 4639–4644.
  • [19] Kairouani L., Elakhdar M., Nehdi E., Bouaziz N.: Use of ejectors in a multi-evaporator refrigeration system for performance enhancement. Int. J. Refrig. 32(2009), 6, 1173–1785.
  • [20] Lin C., Cai W., Li Y., Yan J., Hu Y.: Pressure recovery ratio in a variable cooling loads ejector-based multi-evaporator refrigeration system. Energy 44(2012), 1, 649–656.
  • [21] Lin C., Cai W., Li Y., Yan J., Hu Y., Giridharan K.: Numerical investigation of geometry parameters for pressure recovery of an adjustable ejector in multievaporator refrigeration system. Appl. Therm. Eng. 61(2013), 2, 649–656.
  • [22] Lin C., Li Y., Cai W., Yan J., Hu Y., Gridharan K.: Experimental investigation of the adjustable ejector in a multi-evaporator refrigeration system. Appl. Therm. Eng. 61(2013), 2–10.
  • [23] Zhou M., Wang X., Yu J.: Theoretical study on a novel dual-nozzle ejector enhanced refrigeration cycle for household refrigerator-freezers. Energy. Convers. Manag. 73(2013), 278–284.
  • [24] Hafner A., Forsterling S., Banasiak K.: Multi-ejector concept for R-744 supermarket refrigeration. Int. J. Refrig. 43(2014), 1–13.
  • [25] Chen L.T.: A new ejector–absorber cycle to improve the COP of an absorption refrigeration system. Applied Energy 30(1988), 37–51.
  • [26] Nehdi E., Kairouani L., Bouzaina M.: Performance analysis of the vapor compression cycle using ejector as an expander. Int. J. Energ. Res. 31(2007), 4, 364–375.
  • [27] Kairouani L., Elakhdar M., Nehdi E., Bouaziz N.: Use of ejectors in a multi-evaporator refrigeration system for performance enhancement. Int. J. Refrig. 32(2009), 6, 1173–1185.
  • [28] Brunion O., Feidt M., Hive B.: Compression of the working domains of some compression heat pumps and a compression-absorption heat pump. Int. J. Refrig. 20(1997), 5, 308–318.
  • [29] Cengel Y.A., Boles M.A.: Thermodynamics: An Engineering Approach, 6th Edn. McGraw-Hill, 2007.
  • [30] Bejan A.: Advanced Engineering Thermodynamics. John Wiley & Sons, 1998.
  • [31] Elias Bou Lawz Ksayer: Étude et conception des systèmes á efficacité énergétique améliorée fonctionnant au CO2 comme fluide frigorigène. Chapt. 2, 2007.
  • [32] Huang B.J., Chang J.M., Wang C.P., Petrenko V.A.: A 1-D analysis of ejector performance. Int. J. Refrig. 22(1999), 5, 354–364.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2a22b483-4ae8-4c0c-8bff-b662967d0ff6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.