PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Controllability of semilinear systems with fixed delay in control

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, different sufficient conditions for exact controllability of semilinear systems with a single constant point delay in control are established in infinite dimensional space. The existence and uniqueness of mild solution is also proved under suitable assump­tions. In particular, local Lipschitz continuity of a nonlinear function is used. To illustrate the developed theory some examples are given.
Rocznik
Strony
71--83
Opis fizyczny
Bibliogr. 14 poz.
Twórcy
autor
  • University of Delhi Department of Mathematics Delhi - 110007, India
autor
  • Indian Institute of Technology, Roorkee Department of Mathematics Roorkee (Uttarakhand) - 247667, India
Bibliografia
  • [1] K. Balachandran, J.P. Dauer, Controllability of nonlinear systems in Banach spaces: a survey, J. Optim. Theory Appl. 115 (2002), 7-28.
  • [2] R.F. Curtain, H.J. Zwart, An Introduction to Infinite Dimensional Linear Systems Theory, Springer-Verlag, New York, 1995.
  • [3] I. Davies, P. Jackreece, Controllability and null controllability of linear systems, J. Appl. Sci. Environ. Manag. 9 (2005), 31-36.
  • [4] J. Klamka, Relative controllability and minimum energy control of linear systems with distributed delays in control, IEEE T. Automat. Contr. 21 (1976) 4, 594-595.
  • [5] J. Klamka, Controllability of linear systems with time-variable delays in control, Int. J. Control. 24 (1976) 6, 869-878.
  • [6] J. Klamka, On the controllability of linear systems with delays in the control, Int. J. Control. 25 (1977) 6, 875-883.
  • [7] J. Klamka, Schauder's fixed-point theorem in nonlinear controllability problems, Control Cybern. 29 (2000) 1, 153-165.
  • [8] J. Klamka, Stochastic controllability of systems with variable delay in control, Bull. Pol. Ac: Tech. 56 (2008) 3, 279-284.
  • [9] J. Klamka, Stochastic controllability and minimum energy control of systems with mul­tiple delays in control, Applied Math. Comput. 206 (2008), 704-715.
  • [10] J. Klamka, Stochastic controllability of systems with multiple delays in control, Int. J. Appl. Math. Comput. Sci. 19 (2009), 39-47.
  • [11] Y. Liu, S. Zhao, Controllability analysis of linear time-varying systems with multiple time delay and impulsive effects, Nonlinear Analysis: RWA. 13 (2012), 558-568.
  • [12] K. Naito, Controllability of semilinear control systems dominated by the linear part, SIAM J. Control Optim. 25 (1987), 715-722.
  • [13] L. Wang, Approximate controllability for integrodifferential equations with multiple de­lays, J. Optim. Theory Appl. 143 (2009), 185-206.
  • [14] L. Wang, Approximate boundary controllability for semilinear delay differential equa­tions, J. Applied Math. 2011 (2011), Article ID 587890, 10 pp.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2a1de01e-509d-4b09-846d-cb9c4e6080a0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.